scrcpy/app/src/clock.c
2022-08-03 23:25:09 +02:00

111 lines
3.5 KiB
C

#include "clock.h"
#include "util/log.h"
#define SC_CLOCK_NDEBUG // comment to debug
void
sc_clock_init(struct sc_clock *clock) {
clock->count = 0;
clock->head = 0;
clock->left_sum.system = 0;
clock->left_sum.stream = 0;
clock->right_sum.system = 0;
clock->right_sum.stream = 0;
}
// Estimate the affine function f(stream) = slope * stream + offset
static void
sc_clock_estimate(struct sc_clock *clock,
double *out_slope, sc_tick *out_offset) {
assert(clock->count > 1); // two points are necessary
struct sc_clock_point left_avg = {
.system = clock->left_sum.system / (clock->count / 2),
.stream = clock->left_sum.stream / (clock->count / 2),
};
struct sc_clock_point right_avg = {
.system = clock->right_sum.system / ((clock->count + 1) / 2),
.stream = clock->right_sum.stream / ((clock->count + 1) / 2),
};
double slope = (double) (right_avg.system - left_avg.system)
/ (right_avg.stream - left_avg.stream);
if (clock->count < SC_CLOCK_RANGE) {
/* The first frames are typically received and decoded with more delay
* than the others, causing a wrong slope estimation on start. To
* compensate, assume an initial slope of 1, then progressively use the
* estimated slope. */
slope = (clock->count * slope + (SC_CLOCK_RANGE - clock->count))
/ SC_CLOCK_RANGE;
}
struct sc_clock_point global_avg = {
.system = (clock->left_sum.system + clock->right_sum.system)
/ clock->count,
.stream = (clock->left_sum.stream + clock->right_sum.stream)
/ clock->count,
};
sc_tick offset = global_avg.system - (sc_tick) (global_avg.stream * slope);
*out_slope = slope;
*out_offset = offset;
}
void
sc_clock_update(struct sc_clock *clock, sc_tick system, sc_tick stream) {
struct sc_clock_point *point = &clock->points[clock->head];
if (clock->count == SC_CLOCK_RANGE || clock->count & 1) {
// One point passes from the right sum to the left sum
unsigned mid;
if (clock->count == SC_CLOCK_RANGE) {
mid = (clock->head + SC_CLOCK_RANGE / 2) % SC_CLOCK_RANGE;
} else {
// Only for the first frames
mid = clock->count / 2;
}
struct sc_clock_point *mid_point = &clock->points[mid];
clock->left_sum.system += mid_point->system;
clock->left_sum.stream += mid_point->stream;
clock->right_sum.system -= mid_point->system;
clock->right_sum.stream -= mid_point->stream;
}
if (clock->count == SC_CLOCK_RANGE) {
// The current point overwrites the previous value in the circular
// array, update the left sum accordingly
clock->left_sum.system -= point->system;
clock->left_sum.stream -= point->stream;
} else {
++clock->count;
}
point->system = system;
point->stream = stream;
clock->right_sum.system += system;
clock->right_sum.stream += stream;
clock->head = (clock->head + 1) % SC_CLOCK_RANGE;
if (clock->count > 1) {
// Update estimation
sc_clock_estimate(clock, &clock->slope, &clock->offset);
#ifndef SC_CLOCK_NDEBUG
LOGD("Clock estimation: %f * pts + %" PRItick,
clock->slope, clock->offset);
#endif
}
}
sc_tick
sc_clock_to_system_time(struct sc_clock *clock, sc_tick stream) {
assert(clock->count > 1); // sc_clock_update() must have been called
return (sc_tick) (stream * clock->slope) + clock->offset;
}