D-Modem/pjproject-2.11.1/pjlib/include/pj/os.h

1481 lines
40 KiB
C
Raw Permalink Normal View History

2021-10-30 02:41:03 +08:00
/* $Id$ */
/*
* Copyright (C) 2008-2011 Teluu Inc. (http://www.teluu.com)
* Copyright (C) 2003-2008 Benny Prijono <benny@prijono.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __PJ_OS_H__
#define __PJ_OS_H__
/**
* @file os.h
* @brief OS dependent functions
*/
#include <pj/types.h>
PJ_BEGIN_DECL
/**
* @defgroup PJ_OS Operating System Dependent Functionality.
*/
/* **************************************************************************/
/**
* @defgroup PJ_SYS_INFO System Information
* @ingroup PJ_OS
* @{
*/
/**
* These enumeration contains constants to indicate support of miscellaneous
* system features. These will go in "flags" field of #pj_sys_info structure.
*/
typedef enum pj_sys_info_flag
{
/**
* Support for Apple iOS background feature.
*/
PJ_SYS_HAS_IOS_BG = 1
} pj_sys_info_flag;
/**
* This structure contains information about the system. Use #pj_get_sys_info()
* to obtain the system information.
*/
typedef struct pj_sys_info
{
/**
* Null terminated string containing processor information (e.g. "i386",
* "x86_64"). It may contain empty string if the value cannot be obtained.
*/
pj_str_t machine;
/**
* Null terminated string identifying the system operation (e.g. "Linux",
* "win32", "wince"). It may contain empty string if the value cannot be
* obtained.
*/
pj_str_t os_name;
/**
* A number containing the operating system version number. By convention,
* this field is divided into four bytes, where the highest order byte
* contains the most major version of the OS, the next less significant
* byte contains the less major version, and so on. How the OS version
* number is mapped into these four bytes would be specific for each OS.
* For example, Linux-2.6.32-28 would yield "os_ver" value of 0x0206201c,
* while for Windows 7 it will be 0x06010000 (because dwMajorVersion is
* 6 and dwMinorVersion is 1 for Windows 7).
*
* This field may contain zero if the OS version cannot be obtained.
*/
pj_uint32_t os_ver;
/**
* Null terminated string identifying the SDK name that is used to build
* the library (e.g. "glibc", "uclibc", "msvc", "wince"). It may contain
* empty string if the value cannot eb obtained.
*/
pj_str_t sdk_name;
/**
* A number containing the SDK version, using the numbering convention as
* the "os_ver" field. The value will be zero if the version cannot be
* obtained.
*/
pj_uint32_t sdk_ver;
/**
* A longer null terminated string identifying the underlying system with
* as much information as possible.
*/
pj_str_t info;
/**
* Other flags containing system specific information. The value is
* bitmask of #pj_sys_info_flag constants.
*/
pj_uint32_t flags;
} pj_sys_info;
/**
* Obtain the system information.
*
* @return System information structure.
*/
PJ_DECL(const pj_sys_info*) pj_get_sys_info(void);
/*
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_THREAD Threads
* @ingroup PJ_OS
* @{
* This module provides multithreading API.
*
* \section pj_thread_examples_sec Examples
*
* For examples, please see:
* - \ref page_pjlib_thread_test
* - \ref page_pjlib_sleep_test
*
*/
/**
* Thread creation flags:
* - PJ_THREAD_SUSPENDED: specify that the thread should be created suspended.
*/
typedef enum pj_thread_create_flags
{
PJ_THREAD_SUSPENDED = 1
} pj_thread_create_flags;
/**
* Type of thread entry function.
*/
typedef int (PJ_THREAD_FUNC pj_thread_proc)(void*);
/**
* Size of thread struct.
*/
#if !defined(PJ_THREAD_DESC_SIZE)
# define PJ_THREAD_DESC_SIZE (64)
#endif
/**
* Thread structure, to thread's state when the thread is created by external
* or native API.
*/
typedef long pj_thread_desc[PJ_THREAD_DESC_SIZE];
/**
* Get process ID.
* @return process ID.
*/
PJ_DECL(pj_uint32_t) pj_getpid(void);
/**
* Create a new thread.
*
* @param pool The memory pool from which the thread record
* will be allocated from.
* @param thread_name The optional name to be assigned to the thread.
* @param proc Thread entry function.
* @param arg Argument to be passed to the thread entry function.
* @param stack_size The size of the stack for the new thread, or ZERO or
* PJ_THREAD_DEFAULT_STACK_SIZE to let the
* library choose the reasonable size for the stack.
* For some systems, the stack will be allocated from
* the pool, so the pool must have suitable capacity.
* @param flags Flags for thread creation, which is bitmask combination
* from enum pj_thread_create_flags.
* @param thread Pointer to hold the newly created thread.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_thread_create( pj_pool_t *pool,
const char *thread_name,
pj_thread_proc *proc,
void *arg,
pj_size_t stack_size,
unsigned flags,
pj_thread_t **thread );
/**
* Register a thread that was created by external or native API to PJLIB.
* This function must be called in the context of the thread being registered.
* When the thread is created by external function or API call,
* it must be 'registered' to PJLIB using pj_thread_register(), so that it can
* cooperate with PJLIB's framework. During registration, some data needs to
* be maintained, and this data must remain available during the thread's
* lifetime.
*
* @param thread_name The optional name to be assigned to the thread.
* @param desc Thread descriptor, which must be available throughout
* the lifetime of the thread.
* @param thread Pointer to hold the created thread handle.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_thread_register ( const char *thread_name,
pj_thread_desc desc,
pj_thread_t **thread);
/**
* Check if this thread has been registered to PJLIB.
*
* @return Non-zero if it is registered.
*/
PJ_DECL(pj_bool_t) pj_thread_is_registered(void);
/**
* Get thread priority value for the thread.
*
* @param thread Thread handle.
*
* @return Thread priority value, or -1 on error.
*/
PJ_DECL(int) pj_thread_get_prio(pj_thread_t *thread);
/**
* Set the thread priority. The priority value must be in the priority
* value range, which can be retrieved with #pj_thread_get_prio_min() and
* #pj_thread_get_prio_max() functions.
*
* @param thread Thread handle.
* @param prio New priority to be set to the thread.
*
* @return PJ_SUCCESS on success or the error code.
*/
PJ_DECL(pj_status_t) pj_thread_set_prio(pj_thread_t *thread, int prio);
/**
* Get the lowest priority value available for this thread.
*
* @param thread Thread handle.
* @return Minimum thread priority value, or -1 on error.
*/
PJ_DECL(int) pj_thread_get_prio_min(pj_thread_t *thread);
/**
* Get the highest priority value available for this thread.
*
* @param thread Thread handle.
* @return Minimum thread priority value, or -1 on error.
*/
PJ_DECL(int) pj_thread_get_prio_max(pj_thread_t *thread);
/**
* Return native handle from pj_thread_t for manipulation using native
* OS APIs.
*
* @param thread PJLIB thread descriptor.
*
* @return Native thread handle. For example, when the
* backend thread uses pthread, this function will
* return pointer to pthread_t, and on Windows,
* this function will return HANDLE.
*/
PJ_DECL(void*) pj_thread_get_os_handle(pj_thread_t *thread);
/**
* Get thread name.
*
* @param thread The thread handle.
*
* @return Thread name as null terminated string.
*/
PJ_DECL(const char*) pj_thread_get_name(pj_thread_t *thread);
/**
* Resume a suspended thread.
*
* @param thread The thread handle.
*
* @return zero on success.
*/
PJ_DECL(pj_status_t) pj_thread_resume(pj_thread_t *thread);
/**
* Get the current thread.
*
* @return Thread handle of current thread.
*/
PJ_DECL(pj_thread_t*) pj_thread_this(void);
/**
* Join thread, and block the caller thread until the specified thread exits.
* If it is called from within the thread itself, it will return immediately
* with failure status.
* If the specified thread has already been dead, or it does not exist,
* the function will return immediately with successful status.
*
* @param thread The thread handle.
*
* @return PJ_SUCCESS on success.
*/
PJ_DECL(pj_status_t) pj_thread_join(pj_thread_t *thread);
/**
* Destroy thread and release resources allocated for the thread.
* However, the memory allocated for the pj_thread_t itself will only be released
* when the pool used to create the thread is destroyed.
*
* @param thread The thread handle.
*
* @return zero on success.
*/
PJ_DECL(pj_status_t) pj_thread_destroy(pj_thread_t *thread);
/**
* Put the current thread to sleep for the specified miliseconds.
*
* @param msec Miliseconds delay.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_thread_sleep(unsigned msec);
/**
* @def PJ_CHECK_STACK()
* PJ_CHECK_STACK() macro is used to check the sanity of the stack.
* The OS implementation may check that no stack overflow occurs, and
* it also may collect statistic about stack usage.
*/
#if defined(PJ_OS_HAS_CHECK_STACK) && PJ_OS_HAS_CHECK_STACK!=0
# define PJ_CHECK_STACK() pj_thread_check_stack(__FILE__, __LINE__)
/** @internal
* The implementation of stack checking.
*/
PJ_DECL(void) pj_thread_check_stack(const char *file, int line);
/** @internal
* Get maximum stack usage statistic.
*/
PJ_DECL(pj_uint32_t) pj_thread_get_stack_max_usage(pj_thread_t *thread);
/** @internal
* Dump thread stack status.
*/
PJ_DECL(pj_status_t) pj_thread_get_stack_info(pj_thread_t *thread,
const char **file,
int *line);
#else
# define PJ_CHECK_STACK()
/** pj_thread_get_stack_max_usage() for the thread */
# define pj_thread_get_stack_max_usage(thread) 0
/** pj_thread_get_stack_info() for the thread */
# define pj_thread_get_stack_info(thread,f,l) (*(f)="",*(l)=0)
#endif /* PJ_OS_HAS_CHECK_STACK */
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_SYMBIAN_OS Symbian OS Specific
* @ingroup PJ_OS
* @{
* Functionalities specific to Symbian OS.
*
* Symbian OS strongly discourages the use of polling since this wastes
* CPU power, and instead provides Active Object and Active Scheduler
* pattern to allow application (in this case, PJLIB) to register asynchronous
* tasks. PJLIB port for Symbian complies to this recommended behavior.
* As the result, few things have been changed in PJLIB for Symbian:
* - the timer heap (see @ref PJ_TIMER) is implemented with active
* object framework, and each timer entry registered to the timer
* heap will register an Active Object to the Active Scheduler.
* Because of this, polling the timer heap with pj_timer_heap_poll()
* is no longer necessary, and this function will just evaluate
* to nothing.
* - the ioqueue (see @ref PJ_IOQUEUE) is also implemented with
* active object framework, with each asynchronous operation will
* register an Active Object to the Active Scheduler. Because of
* this, polling the ioqueue with pj_ioqueue_poll() is no longer
* necessary, and this function will just evaluate to nothing.
*
* Since timer heap and ioqueue polling are no longer necessary, Symbian
* application can now poll for all events by calling
* \a User::WaitForAnyRequest() and \a CActiveScheduler::RunIfReady().
* PJLIB provides a thin wrapper which calls these two functions,
* called pj_symbianos_poll().
*/
/**
* Wait the completion of any Symbian active objects. When the timeout
* value is not specified (the \a ms_timeout argument is -1), this
* function is a thin wrapper which calls \a User::WaitForAnyRequest()
* and \a CActiveScheduler::RunIfReady(). If the timeout value is
* specified, this function will schedule a timer entry to the timer
* heap (which is an Active Object), to limit the wait time for event
* occurences. Scheduling a timer entry is an expensive operation,
* therefore application should only specify a timeout value when it's
* really necessary (for example, when it's not sure there are other
* Active Objects currently running in the application).
*
* @param priority The minimum priority of the Active Objects to
* poll, which values are from CActive::TPriority
* constants. If -1 is given, CActive::EPriorityStandard.
* priority will be used.
* @param ms_timeout Optional timeout to wait. Application should
* specify -1 to let the function wait indefinitely
* for any events.
*
* @return PJ_TRUE if there have been any events executed
* during the polling. This function will only return
* PJ_FALSE if \a ms_timeout argument is specified
* (i.e. the value is not -1) and there was no event
* executed when the timeout timer elapsed.
*/
PJ_DECL(pj_bool_t) pj_symbianos_poll(int priority, int ms_timeout);
/**
* This structure declares Symbian OS specific parameters that can be
* specified when calling #pj_symbianos_set_params().
*/
typedef struct pj_symbianos_params
{
/**
* Optional RSocketServ instance to be used by PJLIB. If this
* value is NULL, PJLIB will create a new RSocketServ instance
* when pj_init() is called.
*/
void *rsocketserv;
/**
* Optional RConnection instance to be used by PJLIB when creating
* sockets. If this value is NULL, no RConnection will be
* specified when creating sockets.
*/
void *rconnection;
/**
* Optional RHostResolver instance to be used by PJLIB. If this value
* is NULL, a new RHostResolver instance will be created when
* pj_init() is called.
*/
void *rhostresolver;
/**
* Optional RHostResolver for IPv6 instance to be used by PJLIB.
* If this value is NULL, a new RHostResolver instance will be created
* when pj_init() is called.
*/
void *rhostresolver6;
} pj_symbianos_params;
/**
* Specify Symbian OS parameters to be used by PJLIB. This function MUST
* be called before #pj_init() is called.
*
* @param prm Symbian specific parameters.
*
* @return PJ_SUCCESS if the parameters can be applied
* successfully.
*/
PJ_DECL(pj_status_t) pj_symbianos_set_params(pj_symbianos_params *prm);
/**
* Notify PJLIB that the access point connection has been down or unusable
* and PJLIB should not try to access the Symbian socket API (especially ones
* that send packets). Sending packet when RConnection is reconnected to
* different access point may cause the WaitForRequest() for the function to
* block indefinitely.
*
* @param up If set to PJ_FALSE it will cause PJLIB to not try
* to access socket API, and error will be returned
* immediately instead.
*/
PJ_DECL(void) pj_symbianos_set_connection_status(pj_bool_t up);
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_TLS Thread Local Storage.
* @ingroup PJ_OS
* @{
*/
/**
* Allocate thread local storage index. The initial value of the variable at
* the index is zero.
*
* @param index Pointer to hold the return value.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_thread_local_alloc(long *index);
/**
* Deallocate thread local variable.
*
* @param index The variable index.
*/
PJ_DECL(void) pj_thread_local_free(long index);
/**
* Set the value of thread local variable.
*
* @param index The index of the variable.
* @param value The value.
*/
PJ_DECL(pj_status_t) pj_thread_local_set(long index, void *value);
/**
* Get the value of thread local variable.
*
* @param index The index of the variable.
* @return The value.
*/
PJ_DECL(void*) pj_thread_local_get(long index);
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_ATOMIC Atomic Variables
* @ingroup PJ_OS
* @{
*
* This module provides API to manipulate atomic variables.
*
* \section pj_atomic_examples_sec Examples
*
* For some example codes, please see:
* - @ref page_pjlib_atomic_test
*/
/**
* Create atomic variable.
*
* @param pool The pool.
* @param initial The initial value of the atomic variable.
* @param atomic Pointer to hold the atomic variable upon return.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_atomic_create( pj_pool_t *pool,
pj_atomic_value_t initial,
pj_atomic_t **atomic );
/**
* Destroy atomic variable.
*
* @param atomic_var the atomic variable.
*
* @return PJ_SUCCESS if success.
*/
PJ_DECL(pj_status_t) pj_atomic_destroy( pj_atomic_t *atomic_var );
/**
* Set the value of an atomic type, and return the previous value.
*
* @param atomic_var the atomic variable.
* @param value value to be set to the variable.
*/
PJ_DECL(void) pj_atomic_set( pj_atomic_t *atomic_var,
pj_atomic_value_t value);
/**
* Get the value of an atomic type.
*
* @param atomic_var the atomic variable.
*
* @return the value of the atomic variable.
*/
PJ_DECL(pj_atomic_value_t) pj_atomic_get(pj_atomic_t *atomic_var);
/**
* Increment the value of an atomic type.
*
* @param atomic_var the atomic variable.
*/
PJ_DECL(void) pj_atomic_inc(pj_atomic_t *atomic_var);
/**
* Increment the value of an atomic type and get the result.
*
* @param atomic_var the atomic variable.
*
* @return The incremented value.
*/
PJ_DECL(pj_atomic_value_t) pj_atomic_inc_and_get(pj_atomic_t *atomic_var);
/**
* Decrement the value of an atomic type.
*
* @param atomic_var the atomic variable.
*/
PJ_DECL(void) pj_atomic_dec(pj_atomic_t *atomic_var);
/**
* Decrement the value of an atomic type and get the result.
*
* @param atomic_var the atomic variable.
*
* @return The decremented value.
*/
PJ_DECL(pj_atomic_value_t) pj_atomic_dec_and_get(pj_atomic_t *atomic_var);
/**
* Add a value to an atomic type.
*
* @param atomic_var The atomic variable.
* @param value Value to be added.
*/
PJ_DECL(void) pj_atomic_add( pj_atomic_t *atomic_var,
pj_atomic_value_t value);
/**
* Add a value to an atomic type and get the result.
*
* @param atomic_var The atomic variable.
* @param value Value to be added.
*
* @return The result after the addition.
*/
PJ_DECL(pj_atomic_value_t) pj_atomic_add_and_get( pj_atomic_t *atomic_var,
pj_atomic_value_t value);
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_MUTEX Mutexes.
* @ingroup PJ_OS
* @{
*
* Mutex manipulation. Alternatively, application can use higher abstraction
* for lock objects, which provides uniform API for all kinds of lock
* mechanisms, including mutex. See @ref PJ_LOCK for more information.
*/
/**
* Mutex types:
* - PJ_MUTEX_DEFAULT: default mutex type, which is system dependent.
* - PJ_MUTEX_SIMPLE: non-recursive mutex.
* - PJ_MUTEX_RECURSE: recursive mutex.
*/
typedef enum pj_mutex_type_e
{
PJ_MUTEX_DEFAULT,
PJ_MUTEX_SIMPLE,
PJ_MUTEX_RECURSE
} pj_mutex_type_e;
/**
* Create mutex of the specified type.
*
* @param pool The pool.
* @param name Name to be associated with the mutex (for debugging).
* @param type The type of the mutex, of type #pj_mutex_type_e.
* @param mutex Pointer to hold the returned mutex instance.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_create(pj_pool_t *pool,
const char *name,
int type,
pj_mutex_t **mutex);
/**
* Create simple, non-recursive mutex.
* This function is a simple wrapper for #pj_mutex_create to create
* non-recursive mutex.
*
* @param pool The pool.
* @param name Mutex name.
* @param mutex Pointer to hold the returned mutex instance.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_create_simple( pj_pool_t *pool, const char *name,
pj_mutex_t **mutex );
/**
* Create recursive mutex.
* This function is a simple wrapper for #pj_mutex_create to create
* recursive mutex.
*
* @param pool The pool.
* @param name Mutex name.
* @param mutex Pointer to hold the returned mutex instance.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_create_recursive( pj_pool_t *pool,
const char *name,
pj_mutex_t **mutex );
/**
* Acquire mutex lock.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_lock(pj_mutex_t *mutex);
/**
* Release mutex lock.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_unlock(pj_mutex_t *mutex);
/**
* Try to acquire mutex lock.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code if the
* lock couldn't be acquired.
*/
PJ_DECL(pj_status_t) pj_mutex_trylock(pj_mutex_t *mutex);
/**
* Destroy mutex.
*
* @param mutex Te mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_mutex_destroy(pj_mutex_t *mutex);
/**
* Determine whether calling thread is owning the mutex (only available when
* PJ_DEBUG is set).
* @param mutex The mutex.
* @return Non-zero if yes.
*/
PJ_DECL(pj_bool_t) pj_mutex_is_locked(pj_mutex_t *mutex);
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_RW_MUTEX Reader/Writer Mutex
* @ingroup PJ_OS
* @{
* Reader/writer mutex is a classic synchronization object where multiple
* readers can acquire the mutex, but only a single writer can acquire the
* mutex.
*/
/**
* Opaque declaration for reader/writer mutex.
* Reader/writer mutex is a classic synchronization object where multiple
* readers can acquire the mutex, but only a single writer can acquire the
* mutex.
*/
typedef struct pj_rwmutex_t pj_rwmutex_t;
/**
* Create reader/writer mutex.
*
* @param pool Pool to allocate memory for the mutex.
* @param name Name to be assigned to the mutex.
* @param mutex Pointer to receive the newly created mutex.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_create(pj_pool_t *pool, const char *name,
pj_rwmutex_t **mutex);
/**
* Lock the mutex for reading.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_lock_read(pj_rwmutex_t *mutex);
/**
* Lock the mutex for writing.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_lock_write(pj_rwmutex_t *mutex);
/**
* Release read lock.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_unlock_read(pj_rwmutex_t *mutex);
/**
* Release write lock.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_unlock_write(pj_rwmutex_t *mutex);
/**
* Destroy reader/writer mutex.
*
* @param mutex The mutex.
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_rwmutex_destroy(pj_rwmutex_t *mutex);
/**
* @}
*/
/* **************************************************************************/
/**
* @defgroup PJ_CRIT_SEC Critical sections.
* @ingroup PJ_OS
* @{
* Critical section protection can be used to protect regions where:
* - mutual exclusion protection is needed.
* - it's rather too expensive to create a mutex.
* - the time spent in the region is very very brief.
*
* Critical section is a global object, and it prevents any threads from
* entering any regions that are protected by critical section once a thread
* is already in the section.
*
* Critial section is \a not recursive!
*
* Application <b>MUST NOT</b> call any functions that may cause current
* thread to block (such as allocating memory, performing I/O, locking mutex,
* etc.) while holding the critical section.
*/
/**
* Enter critical section.
*/
PJ_DECL(void) pj_enter_critical_section(void);
/**
* Leave critical section.
*/
PJ_DECL(void) pj_leave_critical_section(void);
/**
* @}
*/
/* **************************************************************************/
#if defined(PJ_HAS_SEMAPHORE) && PJ_HAS_SEMAPHORE != 0
/**
* @defgroup PJ_SEM Semaphores.
* @ingroup PJ_OS
* @{
*
* This module provides abstraction for semaphores, where available.
*/
/**
* Create semaphore.
*
* @param pool The pool.
* @param name Name to be assigned to the semaphore (for logging purpose)
* @param initial The initial count of the semaphore.
* @param max The maximum count of the semaphore.
* @param sem Pointer to hold the semaphore created.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_sem_create( pj_pool_t *pool,
const char *name,
unsigned initial,
unsigned max,
pj_sem_t **sem);
/**
* Wait for semaphore.
*
* @param sem The semaphore.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_sem_wait(pj_sem_t *sem);
/**
* Try wait for semaphore.
*
* @param sem The semaphore.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_sem_trywait(pj_sem_t *sem);
/**
* Release semaphore.
*
* @param sem The semaphore.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_sem_post(pj_sem_t *sem);
/**
* Destroy semaphore.
*
* @param sem The semaphore.
*
* @return PJ_SUCCESS on success, or the error code.
*/
PJ_DECL(pj_status_t) pj_sem_destroy(pj_sem_t *sem);
/**
* @}
*/
#endif /* PJ_HAS_SEMAPHORE */
/* **************************************************************************/
#if defined(PJ_HAS_EVENT_OBJ) && PJ_HAS_EVENT_OBJ != 0
/**
* @defgroup PJ_EVENT Event Object.
* @ingroup PJ_OS
* @{
*
* This module provides abstraction to event object (e.g. Win32 Event) where
* available. Event objects can be used for synchronization among threads.
*/
/**
* Create event object.
*
* @param pool The pool.
* @param name The name of the event object (for logging purpose).
* @param manual_reset Specify whether the event is manual-reset
* @param initial Specify the initial state of the event object.
* @param event Pointer to hold the returned event object.
*
* @return event handle, or NULL if failed.
*/
PJ_DECL(pj_status_t) pj_event_create(pj_pool_t *pool, const char *name,
pj_bool_t manual_reset, pj_bool_t initial,
pj_event_t **event);
/**
* Wait for event to be signaled.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_wait(pj_event_t *event);
/**
* Try wait for event object to be signalled.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_trywait(pj_event_t *event);
/**
* Set the event object state to signaled. For auto-reset event, this
* will only release the first thread that are waiting on the event. For
* manual reset event, the state remains signaled until the event is reset.
* If there is no thread waiting on the event, the event object state
* remains signaled.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_set(pj_event_t *event);
/**
* Set the event object to signaled state to release appropriate number of
* waiting threads and then reset the event object to non-signaled. For
* manual-reset event, this function will release all waiting threads. For
* auto-reset event, this function will only release one waiting thread.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_pulse(pj_event_t *event);
/**
* Set the event object state to non-signaled.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_reset(pj_event_t *event);
/**
* Destroy the event object.
*
* @param event The event object.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_event_destroy(pj_event_t *event);
/**
* @}
*/
#endif /* PJ_HAS_EVENT_OBJ */
/* **************************************************************************/
/**
* @addtogroup PJ_TIME Time Data Type and Manipulation.
* @ingroup PJ_OS
* @{
* This module provides API for manipulating time.
*
* \section pj_time_examples_sec Examples
*
* For examples, please see:
* - \ref page_pjlib_sleep_test
*/
/**
* Get current time of day in local representation.
*
* @param tv Variable to store the result.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_gettimeofday(pj_time_val *tv);
/**
* Parse time value into date/time representation.
*
* @param tv The time.
* @param pt Variable to store the date time result.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_time_decode(const pj_time_val *tv, pj_parsed_time *pt);
/**
* Encode date/time to time value.
*
* @param pt The date/time.
* @param tv Variable to store time value result.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_time_encode(const pj_parsed_time *pt, pj_time_val *tv);
/**
* Convert local time to GMT.
*
* @param tv Time to convert.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_time_local_to_gmt(pj_time_val *tv);
/**
* Convert GMT to local time.
*
* @param tv Time to convert.
*
* @return zero if successfull.
*/
PJ_DECL(pj_status_t) pj_time_gmt_to_local(pj_time_val *tv);
/**
* @}
*/
/* **************************************************************************/
#if defined(PJ_TERM_HAS_COLOR) && PJ_TERM_HAS_COLOR != 0
/**
* @defgroup PJ_TERM Terminal
* @ingroup PJ_OS
* @{
*/
/**
* Set current terminal color.
*
* @param color The RGB color.
*
* @return zero on success.
*/
PJ_DECL(pj_status_t) pj_term_set_color(pj_color_t color);
/**
* Get current terminal foreground color.
*
* @return RGB color.
*/
PJ_DECL(pj_color_t) pj_term_get_color(void);
/**
* @}
*/
#endif /* PJ_TERM_HAS_COLOR */
/* **************************************************************************/
/**
* @defgroup PJ_TIMESTAMP High Resolution Timestamp
* @ingroup PJ_OS
* @{
*
* PJLIB provides <b>High Resolution Timestamp</b> API to access highest
* resolution timestamp value provided by the platform. The API is usefull
* to measure precise elapsed time, and can be used in applications such
* as profiling.
*
* The timestamp value is represented in cycles, and can be related to
* normal time (in seconds or sub-seconds) using various functions provided.
*
* \section pj_timestamp_examples_sec Examples
*
* For examples, please see:
* - \ref page_pjlib_sleep_test
* - \ref page_pjlib_timestamp_test
*/
/*
* High resolution timer.
*/
#if defined(PJ_HAS_HIGH_RES_TIMER) && PJ_HAS_HIGH_RES_TIMER != 0
/**
* Get monotonic time since some unspecified starting point.
*
* @param tv Variable to store the result.
*
* @return PJ_SUCCESS if successful.
*/
PJ_DECL(pj_status_t) pj_gettickcount(pj_time_val *tv);
/**
* Acquire high resolution timer value. The time value are stored
* in cycles.
*
* @param ts High resolution timer value.
* @return PJ_SUCCESS or the appropriate error code.
*
* @see pj_get_timestamp_freq().
*/
PJ_DECL(pj_status_t) pj_get_timestamp(pj_timestamp *ts);
/**
* Get high resolution timer frequency, in cycles per second.
*
* @param freq Timer frequency, in cycles per second.
* @return PJ_SUCCESS or the appropriate error code.
*/
PJ_DECL(pj_status_t) pj_get_timestamp_freq(pj_timestamp *freq);
/**
* Set timestamp from 32bit values.
* @param t The timestamp to be set.
* @param hi The high 32bit part.
* @param lo The low 32bit part.
*/
PJ_INLINE(void) pj_set_timestamp32(pj_timestamp *t, pj_uint32_t hi,
pj_uint32_t lo)
{
t->u32.hi = hi;
t->u32.lo = lo;
}
/**
* Compare timestamp t1 and t2.
* @param t1 t1.
* @param t2 t2.
* @return -1 if (t1 < t2), 1 if (t1 > t2), or 0 if (t1 == t2)
*/
PJ_INLINE(int) pj_cmp_timestamp(const pj_timestamp *t1, const pj_timestamp *t2)
{
#if PJ_HAS_INT64
if (t1->u64 < t2->u64)
return -1;
else if (t1->u64 > t2->u64)
return 1;
else
return 0;
#else
if (t1->u32.hi < t2->u32.hi ||
(t1->u32.hi == t2->u32.hi && t1->u32.lo < t2->u32.lo))
return -1;
else if (t1->u32.hi > t2->u32.hi ||
(t1->u32.hi == t2->u32.hi && t1->u32.lo > t2->u32.lo))
return 1;
else
return 0;
#endif
}
/**
* Add timestamp t2 to t1.
* @param t1 t1.
* @param t2 t2.
*/
PJ_INLINE(void) pj_add_timestamp(pj_timestamp *t1, const pj_timestamp *t2)
{
#if PJ_HAS_INT64
t1->u64 += t2->u64;
#else
pj_uint32_t old = t1->u32.lo;
t1->u32.hi += t2->u32.hi;
t1->u32.lo += t2->u32.lo;
if (t1->u32.lo < old)
++t1->u32.hi;
#endif
}
/**
* Add timestamp t2 to t1.
* @param t1 t1.
* @param t2 t2.
*/
PJ_INLINE(void) pj_add_timestamp32(pj_timestamp *t1, pj_uint32_t t2)
{
#if PJ_HAS_INT64
t1->u64 += t2;
#else
pj_uint32_t old = t1->u32.lo;
t1->u32.lo += t2;
if (t1->u32.lo < old)
++t1->u32.hi;
#endif
}
/**
* Substract timestamp t2 from t1.
* @param t1 t1.
* @param t2 t2.
*/
PJ_INLINE(void) pj_sub_timestamp(pj_timestamp *t1, const pj_timestamp *t2)
{
#if PJ_HAS_INT64
t1->u64 -= t2->u64;
#else
t1->u32.hi -= t2->u32.hi;
if (t1->u32.lo >= t2->u32.lo)
t1->u32.lo -= t2->u32.lo;
else {
t1->u32.lo -= t2->u32.lo;
--t1->u32.hi;
}
#endif
}
/**
* Substract timestamp t2 from t1.
* @param t1 t1.
* @param t2 t2.
*/
PJ_INLINE(void) pj_sub_timestamp32(pj_timestamp *t1, pj_uint32_t t2)
{
#if PJ_HAS_INT64
t1->u64 -= t2;
#else
if (t1->u32.lo >= t2)
t1->u32.lo -= t2;
else {
t1->u32.lo -= t2;
--t1->u32.hi;
}
#endif
}
/**
* Get the timestamp difference between t2 and t1 (that is t2 minus t1),
* and return a 32bit signed integer difference.
*/
PJ_INLINE(pj_int32_t) pj_timestamp_diff32(const pj_timestamp *t1,
const pj_timestamp *t2)
{
/* Be careful with the signess (I think!) */
#if PJ_HAS_INT64
pj_int64_t diff = t2->u64 - t1->u64;
return (pj_int32_t) diff;
#else
pj_int32 diff = t2->u32.lo - t1->u32.lo;
return diff;
#endif
}
/**
* Calculate the elapsed time, and store it in pj_time_val.
* This function calculates the elapsed time using highest precision
* calculation that is available for current platform, considering
* whether floating point or 64-bit precision arithmetic is available.
* For maximum portability, application should prefer to use this function
* rather than calculating the elapsed time by itself.
*
* @param start The starting timestamp.
* @param stop The end timestamp.
*
* @return Elapsed time as #pj_time_val.
*
* @see pj_elapsed_usec(), pj_elapsed_cycle(), pj_elapsed_nanosec()
*/
PJ_DECL(pj_time_val) pj_elapsed_time( const pj_timestamp *start,
const pj_timestamp *stop );
/**
* Calculate the elapsed time as 32-bit miliseconds.
* This function calculates the elapsed time using highest precision
* calculation that is available for current platform, considering
* whether floating point or 64-bit precision arithmetic is available.
* For maximum portability, application should prefer to use this function
* rather than calculating the elapsed time by itself.
*
* @param start The starting timestamp.
* @param stop The end timestamp.
*
* @return Elapsed time in milisecond.
*
* @see pj_elapsed_time(), pj_elapsed_cycle(), pj_elapsed_nanosec()
*/
PJ_DECL(pj_uint32_t) pj_elapsed_msec( const pj_timestamp *start,
const pj_timestamp *stop );
/**
* Variant of #pj_elapsed_msec() which returns 64bit value.
*/
PJ_DECL(pj_uint64_t) pj_elapsed_msec64(const pj_timestamp *start,
const pj_timestamp *stop );
/**
* Calculate the elapsed time in 32-bit microseconds.
* This function calculates the elapsed time using highest precision
* calculation that is available for current platform, considering
* whether floating point or 64-bit precision arithmetic is available.
* For maximum portability, application should prefer to use this function
* rather than calculating the elapsed time by itself.
*
* @param start The starting timestamp.
* @param stop The end timestamp.
*
* @return Elapsed time in microsecond.
*
* @see pj_elapsed_time(), pj_elapsed_cycle(), pj_elapsed_nanosec()
*/
PJ_DECL(pj_uint32_t) pj_elapsed_usec( const pj_timestamp *start,
const pj_timestamp *stop );
/**
* Calculate the elapsed time in 32-bit nanoseconds.
* This function calculates the elapsed time using highest precision
* calculation that is available for current platform, considering
* whether floating point or 64-bit precision arithmetic is available.
* For maximum portability, application should prefer to use this function
* rather than calculating the elapsed time by itself.
*
* @param start The starting timestamp.
* @param stop The end timestamp.
*
* @return Elapsed time in nanoseconds.
*
* @see pj_elapsed_time(), pj_elapsed_cycle(), pj_elapsed_usec()
*/
PJ_DECL(pj_uint32_t) pj_elapsed_nanosec( const pj_timestamp *start,
const pj_timestamp *stop );
/**
* Calculate the elapsed time in 32-bit cycles.
* This function calculates the elapsed time using highest precision
* calculation that is available for current platform, considering
* whether floating point or 64-bit precision arithmetic is available.
* For maximum portability, application should prefer to use this function
* rather than calculating the elapsed time by itself.
*
* @param start The starting timestamp.
* @param stop The end timestamp.
*
* @return Elapsed time in cycles.
*
* @see pj_elapsed_usec(), pj_elapsed_time(), pj_elapsed_nanosec()
*/
PJ_DECL(pj_uint32_t) pj_elapsed_cycle( const pj_timestamp *start,
const pj_timestamp *stop );
#endif /* PJ_HAS_HIGH_RES_TIMER */
/** @} */
/* **************************************************************************/
/**
* @defgroup PJ_APP_OS Application execution
* @ingroup PJ_OS
* @{
*/
/**
* Type for application main function.
*/
typedef int (*pj_main_func_ptr)(int argc, char *argv[]);
/**
* Run the application. This function has to be called in the main thread
* and after doing the necessary initialization according to the flags
* provided, it will call main_func() function.
*
* @param main_func Application's main function.
* @param argc Number of arguments from the main() function, which
* will be passed to main_func() function.
* @param argv The arguments from the main() function, which will
* be passed to main_func() function.
* @param flags Flags for application execution, currently must be 0.
*
* @return main_func()'s return value.
*/
PJ_DECL(int) pj_run_app(pj_main_func_ptr main_func, int argc, char *argv[],
unsigned flags);
/** @} */
/* **************************************************************************/
/**
* Internal PJLIB function to initialize the threading subsystem.
* @return PJ_SUCCESS or the appropriate error code.
*/
pj_status_t pj_thread_init(void);
PJ_END_DECL
#endif /* __PJ_OS_H__ */