Trie: Implement trie walking code
Trie walking allows enumeration of prefixes in a trie in the usual lexicographic order. Optionally, trie enumeration can be restricted to a chosen subnet (and its descendants).
This commit is contained in:
parent
71c18d9f53
commit
062e69bf52
3 changed files with 413 additions and 13 deletions
|
@ -140,7 +140,8 @@ struct f_tree {
|
|||
void *data;
|
||||
};
|
||||
|
||||
#define TRIE_STEP 4
|
||||
#define TRIE_STEP 4
|
||||
#define TRIE_STACK_LENGTH 33
|
||||
|
||||
struct f_trie_node4
|
||||
{
|
||||
|
@ -175,6 +176,16 @@ struct f_trie
|
|||
struct f_trie_node root; /* Root trie node */
|
||||
};
|
||||
|
||||
struct f_trie_walk_state
|
||||
{
|
||||
u8 ipv4;
|
||||
u8 accept_length; /* Current inter-node prefix position */
|
||||
u8 start_pos; /* Initial prefix position in stack[0] */
|
||||
u8 local_pos; /* Current intra-node prefix position */
|
||||
u8 stack_pos; /* Current node in stack below */
|
||||
const struct f_trie_node *stack[TRIE_STACK_LENGTH];
|
||||
};
|
||||
|
||||
struct f_tree *f_new_tree(void);
|
||||
struct f_tree *build_tree(struct f_tree *);
|
||||
const struct f_tree *find_tree(const struct f_tree *t, const struct f_val *val);
|
||||
|
@ -185,9 +196,19 @@ void tree_walk(const struct f_tree *t, void (*hook)(const struct f_tree *, void
|
|||
struct f_trie *f_new_trie(linpool *lp, uint data_size);
|
||||
void *trie_add_prefix(struct f_trie *t, const net_addr *n, uint l, uint h);
|
||||
int trie_match_net(const struct f_trie *t, const net_addr *n);
|
||||
void trie_walk_init(struct f_trie_walk_state *s, const struct f_trie *t, const net_addr *from);
|
||||
int trie_walk_next(struct f_trie_walk_state *s, net_addr *net);
|
||||
int trie_same(const struct f_trie *t1, const struct f_trie *t2);
|
||||
void trie_format(const struct f_trie *t, buffer *buf);
|
||||
|
||||
#define TRIE_WALK(trie, net, from) ({ \
|
||||
net_addr net; \
|
||||
struct f_trie_walk_state tws_; \
|
||||
trie_walk_init(&tws_, trie, from); \
|
||||
while (trie_walk_next(&tws_, &net))
|
||||
|
||||
#define TRIE_WALK_END })
|
||||
|
||||
#define F_CMP_ERROR 999
|
||||
|
||||
const char *f_type_name(enum f_type t);
|
||||
|
|
245
filter/trie.c
245
filter/trie.c
|
@ -1,8 +1,8 @@
|
|||
/*
|
||||
* Filters: Trie for prefix sets
|
||||
*
|
||||
* (c) 2009--2020 Ondrej Zajicek <santiago@crfreenet.org>
|
||||
* (c) 2009--2020 CZ.NIC z.s.p.o.
|
||||
* (c) 2009--2021 Ondrej Zajicek <santiago@crfreenet.org>
|
||||
* (c) 2009--2021 CZ.NIC z.s.p.o.
|
||||
*
|
||||
* Can be freely distributed and used under the terms of the GNU GPL.
|
||||
*/
|
||||
|
@ -82,6 +82,24 @@
|
|||
* - we are still on path and keep walking (node length < &plen)
|
||||
*
|
||||
* The walking code in trie_match_net() is structured according to these cases.
|
||||
*
|
||||
* Iteration over prefixes in a trie can be done using TRIE_WALK() macro, or
|
||||
* directly using trie_walk_init() and trie_walk_next() functions. The second
|
||||
* approeach allows suspending the iteration and continuing in it later.
|
||||
* Prefixes are enumerated in the usual lexicographic order and may be
|
||||
* restricted to a subset of the trie (all subnets of a specified prefix).
|
||||
*
|
||||
* Note that the trie walk does not reliably enumerate `implicit' prefixes
|
||||
* defined by &low and &high fields in prefix patterns, it is supposed to be
|
||||
* used on tries constructed from `explicit' prefixes (&low == &plen == &high
|
||||
* in call to trie_add_prefix()).
|
||||
*
|
||||
* The trie walk has three basic state variables stored in the struct
|
||||
* &f_trie_walk_state -- the current node in &stack[stack_pos], &accept_length
|
||||
* for iteration over inter-node prefixes (non-branching prefixes on compressed
|
||||
* path between the current node and its parent node, stored in the bitmap
|
||||
* &accept of the current node) and &local_pos for iteration over intra-node
|
||||
* prefixes (stored in the bitmap &local).
|
||||
*/
|
||||
|
||||
#include "nest/bird.h"
|
||||
|
@ -224,7 +242,7 @@ trie_amask_to_local(ip_addr px, ip_addr amask, uint nlen)
|
|||
|
||||
#define ADD_LOCAL(N,X,V) ({ uint v_ = (V); if (X) (N)->v4.local |= v_; else (N)->v6.local |= v_; })
|
||||
|
||||
#define GET_CHILD(N,F,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I])
|
||||
#define GET_CHILD(N,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I])
|
||||
|
||||
|
||||
static void *
|
||||
|
@ -312,7 +330,7 @@ trie_add_node(struct f_trie *t, uint plen, ip_addr px, uint local, uint l, uint
|
|||
|
||||
/* n->plen < plen and plen <= 32 (128) */
|
||||
o = n;
|
||||
n = GET_CHILD(n, c, v4, ipa_getbits(paddr, nlen, TRIE_STEP));
|
||||
n = GET_CHILD(n, v4, ipa_getbits(paddr, nlen, TRIE_STEP));
|
||||
}
|
||||
|
||||
/* We add new tail node 'a' after node 'o' */
|
||||
|
@ -522,6 +540,225 @@ trie_match_net(const struct f_trie *t, const net_addr *n)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
#define SAME_PREFIX(A,B,X,L) ((X) ? ip4_prefix_equal((A)->v4.addr, net4_prefix(B), (L)) : ip6_prefix_equal((A)->v6.addr, net6_prefix(B), (L)))
|
||||
#define GET_NET_BITS(N,X,A,B) ((X) ? ip4_getbits(net4_prefix(N), (A), (B)) : ip6_getbits(net6_prefix(N), (A), (B)))
|
||||
|
||||
/**
|
||||
* trie_walk_init
|
||||
* @s: walk state
|
||||
* @t: trie
|
||||
* @net: optional subnet for walk
|
||||
*
|
||||
* Initialize walk state for subsequent walk through nodes of the trie @t by
|
||||
* trie_walk_next(). The argument @net allows to restrict walk to given subnet,
|
||||
* otherwise full walk over all nodes is used. This is done by finding node at
|
||||
* or below @net and starting position in it.
|
||||
*/
|
||||
void
|
||||
trie_walk_init(struct f_trie_walk_state *s, const struct f_trie *t, const net_addr *net)
|
||||
{
|
||||
*s = (struct f_trie_walk_state) {
|
||||
.ipv4 = t->ipv4,
|
||||
.accept_length = 0,
|
||||
.start_pos = 1,
|
||||
.local_pos = 1,
|
||||
.stack_pos = 0,
|
||||
.stack[0] = &t->root
|
||||
};
|
||||
|
||||
if (!net)
|
||||
return;
|
||||
|
||||
/* We want to find node of level at least plen */
|
||||
int plen = ROUND_DOWN_POW2(net->pxlen, TRIE_STEP);
|
||||
const struct f_trie_node *n = &t->root;
|
||||
const int v4 = t->ipv4;
|
||||
|
||||
while (n)
|
||||
{
|
||||
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
||||
|
||||
/* We are out of path */
|
||||
if (!SAME_PREFIX(n, net, v4, MIN(net->pxlen, nlen)))
|
||||
break;
|
||||
|
||||
/* We found final node */
|
||||
if (nlen >= plen)
|
||||
{
|
||||
if (nlen == plen)
|
||||
{
|
||||
/* Find proper local_pos, while accept_length is not used */
|
||||
int step = net->pxlen - plen;
|
||||
s->start_pos = s->local_pos = (1u << step) + GET_NET_BITS(net, v4, plen, step);
|
||||
s->accept_length = plen;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Start from pos 1 in local node, but first try accept mask */
|
||||
s->accept_length = net->pxlen;
|
||||
}
|
||||
|
||||
s->stack[0] = n;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Choose child */
|
||||
n = GET_CHILD(n, v4, GET_NET_BITS(net, v4, nlen, TRIE_STEP));
|
||||
}
|
||||
|
||||
s->stack[0] = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
#define GET_ACCEPT_BIT(N,X,B) ((X) ? ip4_getbit((N)->v4.accept, (B)) : ip6_getbit((N)->v6.accept, (B)))
|
||||
#define GET_LOCAL_BIT(N,X,B) (((X) ? (N)->v4.local : (N)->v6.local) & (1u << (B)))
|
||||
|
||||
/**
|
||||
* trie_walk_next
|
||||
* @s: walk state
|
||||
* @net: return value
|
||||
*
|
||||
* Find the next prefix in the trie walk and return it in the buffer @net.
|
||||
* Prefixes are walked in the usual lexicographic order and may be restricted
|
||||
* to a subset of the trie during walk setup by trie_walk_init(). Note that the
|
||||
* trie walk does not iterate reliably over 'implicit' prefixes defined by &low
|
||||
* and &high fields in prefix patterns, it is supposed to be used on tries
|
||||
* constructed from 'explicit' prefixes (&low == &plen == &high in call to
|
||||
* trie_add_prefix()).
|
||||
*
|
||||
* Result: 1 if the next prefix was found, 0 for the end of walk.
|
||||
*/
|
||||
int
|
||||
trie_walk_next(struct f_trie_walk_state *s, net_addr *net)
|
||||
{
|
||||
const struct f_trie_node *n = s->stack[s->stack_pos];
|
||||
int len = s->accept_length;
|
||||
int pos = s->local_pos;
|
||||
int v4 = s->ipv4;
|
||||
|
||||
/*
|
||||
* The walk has three basic state variables -- n, len and pos. In each node n,
|
||||
* we first walk superprefixes (by len in &accept bitmask), and then we walk
|
||||
* internal positions (by pos in &local bitmask). These positions are:
|
||||
*
|
||||
* 1
|
||||
* 2 3
|
||||
* 4 5 6 7
|
||||
* 8 9 A B C D E F
|
||||
*
|
||||
* We walk them depth-first, including virtual positions 10-1F that are
|
||||
* equivalent of position 1 in child nodes 0-F.
|
||||
*/
|
||||
|
||||
if (!n)
|
||||
{
|
||||
memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
|
||||
return 0;
|
||||
}
|
||||
|
||||
next_node:;
|
||||
/* Current node prefix length */
|
||||
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
||||
|
||||
/* First, check for accept prefix */
|
||||
for (; len < nlen; len++)
|
||||
if (GET_ACCEPT_BIT(n, v4, len - 1))
|
||||
{
|
||||
if (v4)
|
||||
net_fill_ip4(net, ip4_and(n->v4.addr, ip4_mkmask(len)), len);
|
||||
else
|
||||
net_fill_ip6(net, ip6_and(n->v6.addr, ip6_mkmask(len)), len);
|
||||
|
||||
s->local_pos = pos;
|
||||
s->accept_length = len + 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
next_pos:
|
||||
/* Bottom of this node */
|
||||
if (pos >= (1 << TRIE_STEP))
|
||||
{
|
||||
const struct f_trie_node *child = GET_CHILD(n, v4, pos - (1 << TRIE_STEP));
|
||||
int dir = 0;
|
||||
|
||||
/* No child node */
|
||||
if (!child)
|
||||
{
|
||||
/* Step up until return from left child (pos is even) */
|
||||
do
|
||||
{
|
||||
/* Step up from start node */
|
||||
if ((s->stack_pos == 0) && (pos == s->start_pos))
|
||||
{
|
||||
s->stack[0] = NULL;
|
||||
memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Top of this node */
|
||||
if (pos == 1)
|
||||
{
|
||||
ASSERT(s->stack_pos);
|
||||
const struct f_trie_node *old = n;
|
||||
|
||||
/* Move to parent node */
|
||||
s->stack_pos--;
|
||||
n = s->stack[s->stack_pos];
|
||||
nlen = v4 ? n->v4.plen : n->v6.plen;
|
||||
|
||||
pos = v4 ?
|
||||
ip4_getbits(old->v4.addr, nlen, TRIE_STEP) :
|
||||
ip6_getbits(old->v6.addr, nlen, TRIE_STEP);
|
||||
pos += (1 << TRIE_STEP);
|
||||
len = nlen;
|
||||
|
||||
ASSERT(GET_CHILD(n, v4, pos - (1 << TRIE_STEP)) == old);
|
||||
}
|
||||
|
||||
/* Step up */
|
||||
dir = pos % 2;
|
||||
pos = pos / 2;
|
||||
}
|
||||
while (dir);
|
||||
|
||||
/* Continue with step down to the right child */
|
||||
pos = 2 * pos + 1;
|
||||
goto next_pos;
|
||||
}
|
||||
|
||||
/* Move to child node */
|
||||
pos = 1;
|
||||
len = nlen + TRIE_STEP;
|
||||
|
||||
s->stack_pos++;
|
||||
n = s->stack[s->stack_pos] = child;
|
||||
goto next_node;
|
||||
}
|
||||
|
||||
/* Check for local prefix */
|
||||
if (GET_LOCAL_BIT(n, v4, pos))
|
||||
{
|
||||
/* Convert pos to address of local network */
|
||||
int x = (pos >= 2) + (pos >= 4) + (pos >= 8);
|
||||
int y = pos & ((1u << x) - 1);
|
||||
|
||||
if (v4)
|
||||
net_fill_ip4(net, !x ? n->v4.addr : ip4_setbits(n->v4.addr, nlen + x - 1, y), nlen + x);
|
||||
else
|
||||
net_fill_ip6(net, !x ? n->v6.addr : ip6_setbits(n->v6.addr, nlen + x - 1, y), nlen + x);
|
||||
|
||||
s->local_pos = 2 * pos;
|
||||
s->accept_length = len;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Step down */
|
||||
pos = 2 * pos;
|
||||
goto next_pos;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
trie_node_same4(const struct f_trie_node4 *t1, const struct f_trie_node4 *t2)
|
||||
{
|
||||
|
|
|
@ -45,6 +45,13 @@ get_exp_random(void)
|
|||
return n;
|
||||
}
|
||||
|
||||
static int
|
||||
compare_prefixes(const void *a, const void *b)
|
||||
{
|
||||
return net_compare(&((const struct f_prefix *) a)->net,
|
||||
&((const struct f_prefix *) b)->net);
|
||||
}
|
||||
|
||||
static inline int
|
||||
matching_ip4_nets(const net_addr_ip4 *a, const net_addr_ip4 *b)
|
||||
{
|
||||
|
@ -106,11 +113,15 @@ get_random_net(net_addr *net, int v6)
|
|||
}
|
||||
|
||||
static void
|
||||
get_random_prefix(struct f_prefix *px, int v6)
|
||||
get_random_prefix(struct f_prefix *px, int v6, int tight)
|
||||
{
|
||||
get_random_net(&px->net, v6);
|
||||
|
||||
if (bt_random() % 2)
|
||||
if (tight)
|
||||
{
|
||||
px->lo = px->hi = px->net.pxlen;
|
||||
}
|
||||
else if (bt_random() % 2)
|
||||
{
|
||||
px->lo = 0;
|
||||
px->hi = px->net.pxlen;
|
||||
|
@ -238,7 +249,7 @@ get_outer_net(net_addr *net, const struct f_prefix *src)
|
|||
}
|
||||
|
||||
static list *
|
||||
make_random_prefix_list(linpool *lp, int num, int v6)
|
||||
make_random_prefix_list(linpool *lp, int num, int v6, int tight)
|
||||
{
|
||||
list *prefixes = lp_allocz(lp, sizeof(struct f_prefix_node));
|
||||
init_list(prefixes);
|
||||
|
@ -246,7 +257,7 @@ make_random_prefix_list(linpool *lp, int num, int v6)
|
|||
for (int i = 0; i < num; i++)
|
||||
{
|
||||
struct f_prefix_node *px = lp_allocz(lp, sizeof(struct f_prefix_node));
|
||||
get_random_prefix(&px->prefix, v6);
|
||||
get_random_prefix(&px->prefix, v6, tight);
|
||||
add_tail(prefixes, &px->n);
|
||||
|
||||
char buf[64];
|
||||
|
@ -429,7 +440,7 @@ t_match_random_net(void)
|
|||
linpool *lp = lp_new_default(&root_pool);
|
||||
for (int round = 0; round < TESTS_NUM; round++)
|
||||
{
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6);
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6, 0);
|
||||
struct f_trie *trie = make_trie_from_prefix_list(lp, prefixes);
|
||||
|
||||
for (int i = 0; i < PREFIX_TESTS_NUM; i++)
|
||||
|
@ -457,7 +468,7 @@ t_match_inner_net(void)
|
|||
linpool *lp = lp_new_default(&root_pool);
|
||||
for (int round = 0; round < TESTS_NUM; round++)
|
||||
{
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6);
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6, 0);
|
||||
struct f_trie *trie = make_trie_from_prefix_list(lp, prefixes);
|
||||
|
||||
struct f_prefix_node *n = HEAD(*prefixes);
|
||||
|
@ -488,7 +499,7 @@ t_match_outer_net(void)
|
|||
linpool *lp = lp_new_default(&root_pool);
|
||||
for (int round = 0; round < TESTS_NUM; round++)
|
||||
{
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6);
|
||||
list *prefixes = make_random_prefix_list(lp, PREFIXES_NUM, v6, 0);
|
||||
struct f_trie *trie = make_trie_from_prefix_list(lp, prefixes);
|
||||
|
||||
struct f_prefix_node *n = HEAD(*prefixes);
|
||||
|
@ -613,7 +624,7 @@ t_trie_same(void)
|
|||
linpool *lp = lp_new_default(&root_pool);
|
||||
for (int round = 0; round < TESTS_NUM*4; round++)
|
||||
{
|
||||
list *prefixes = make_random_prefix_list(lp, 100 * PREFIXES_NUM, v6);
|
||||
list *prefixes = make_random_prefix_list(lp, 100 * PREFIXES_NUM, v6, 0);
|
||||
struct f_trie *trie1 = f_new_trie(lp, 0);
|
||||
struct f_trie *trie2 = f_new_trie(lp, 0);
|
||||
|
||||
|
@ -630,6 +641,136 @@ t_trie_same(void)
|
|||
lp_flush(lp);
|
||||
}
|
||||
|
||||
bt_bird_cleanup();
|
||||
return 1;
|
||||
}
|
||||
|
||||
static inline void
|
||||
log_networks(const net_addr *a, const net_addr *b)
|
||||
{
|
||||
if (bt_verbose >= BT_VERBOSE_ABSOLUTELY_ALL)
|
||||
{
|
||||
char buf0[64];
|
||||
char buf1[64];
|
||||
bt_format_net(buf0, 64, a);
|
||||
bt_format_net(buf1, 64, b);
|
||||
bt_debug("Found %s expected %s\n", buf0, buf1);
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
t_trie_walk(void)
|
||||
{
|
||||
bt_bird_init();
|
||||
bt_config_parse(BT_CONFIG_SIMPLE);
|
||||
|
||||
linpool *lp = lp_new_default(&root_pool);
|
||||
for (int round = 0; round < TESTS_NUM*8; round++)
|
||||
{
|
||||
int level = round / TESTS_NUM;
|
||||
int v6 = level % 2;
|
||||
int num = PREFIXES_NUM * (int[]){1, 10, 100, 1000}[level / 2];
|
||||
int pos = 0, end = 0;
|
||||
list *prefixes = make_random_prefix_list(lp, num, v6, 1);
|
||||
struct f_trie *trie = make_trie_from_prefix_list(lp, prefixes);
|
||||
struct f_prefix *pxset = malloc((num + 1) * sizeof(struct f_prefix));
|
||||
|
||||
struct f_prefix_node *n;
|
||||
WALK_LIST(n, *prefixes)
|
||||
pxset[pos++] = n->prefix;
|
||||
memset(&pxset[pos], 0, sizeof (struct f_prefix));
|
||||
|
||||
qsort(pxset, num, sizeof(struct f_prefix), compare_prefixes);
|
||||
|
||||
|
||||
/* Full walk */
|
||||
bt_debug("Full walk (round %d, %d nets)\n", round, num);
|
||||
|
||||
pos = 0;
|
||||
TRIE_WALK(trie, net, NULL)
|
||||
{
|
||||
log_networks(&net, &pxset[pos].net);
|
||||
bt_assert(net_equal(&net, &pxset[pos].net));
|
||||
|
||||
/* Skip possible duplicates */
|
||||
while (net_equal(&pxset[pos].net, &pxset[pos + 1].net))
|
||||
pos++;
|
||||
|
||||
pos++;
|
||||
}
|
||||
TRIE_WALK_END;
|
||||
|
||||
bt_assert(pos == num);
|
||||
bt_debug("Full walk done\n");
|
||||
|
||||
|
||||
/* Prepare net for subnet walk - start with random prefix */
|
||||
pos = bt_random() % num;
|
||||
end = pos + (int[]){2, 2, 3, 4}[level / 2];
|
||||
end = MIN(end, num);
|
||||
|
||||
struct f_prefix from = pxset[pos];
|
||||
|
||||
/* Find a common superprefix to several subsequent prefixes */
|
||||
for (; pos < end; pos++)
|
||||
{
|
||||
if (net_equal(&from.net, &pxset[pos].net))
|
||||
continue;
|
||||
|
||||
int common = !v6 ?
|
||||
ip4_pxlen(net4_prefix(&from.net), net4_prefix(&pxset[pos].net)) :
|
||||
ip6_pxlen(net6_prefix(&from.net), net6_prefix(&pxset[pos].net));
|
||||
from.net.pxlen = MIN(from.net.pxlen, common);
|
||||
|
||||
if (!v6)
|
||||
((net_addr_ip4 *) &from.net)->prefix =
|
||||
ip4_and(net4_prefix(&from.net), net4_prefix(&pxset[pos].net));
|
||||
else
|
||||
((net_addr_ip6 *) &from.net)->prefix =
|
||||
ip6_and(net6_prefix(&from.net), net6_prefix(&pxset[pos].net));
|
||||
}
|
||||
|
||||
/* Fix irrelevant bits */
|
||||
if (!v6)
|
||||
((net_addr_ip4 *) &from.net)->prefix =
|
||||
ip4_and(net4_prefix(&from.net), ip4_mkmask(net4_pxlen(&from.net)));
|
||||
else
|
||||
((net_addr_ip6 *) &from.net)->prefix =
|
||||
ip6_and(net6_prefix(&from.net), ip6_mkmask(net6_pxlen(&from.net)));
|
||||
|
||||
|
||||
/* Find initial position for final prefix */
|
||||
for (pos = 0; pos < num; pos++)
|
||||
if (compare_prefixes(&pxset[pos], &from) >= 0)
|
||||
break;
|
||||
|
||||
int p0 = pos;
|
||||
char buf0[64];
|
||||
bt_format_net(buf0, 64, &from.net);
|
||||
bt_debug("Subnet walk for %s (round %d, %d nets)\n", buf0, round, num);
|
||||
|
||||
/* Subnet walk */
|
||||
TRIE_WALK(trie, net, &from.net)
|
||||
{
|
||||
log_networks(&net, &pxset[pos].net);
|
||||
bt_assert(net_equal(&net, &pxset[pos].net));
|
||||
bt_assert(net_in_netX(&net, &from.net));
|
||||
|
||||
/* Skip possible duplicates */
|
||||
while (net_equal(&pxset[pos].net, &pxset[pos + 1].net))
|
||||
pos++;
|
||||
|
||||
pos++;
|
||||
}
|
||||
TRIE_WALK_END;
|
||||
|
||||
bt_assert((pos == num) || !net_in_netX(&pxset[pos].net, &from.net));
|
||||
bt_debug("Subnet walk done for %s (found %d nets)\n", buf0, pos - p0);
|
||||
|
||||
lp_flush(lp);
|
||||
}
|
||||
|
||||
bt_bird_cleanup();
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -642,6 +783,7 @@ main(int argc, char *argv[])
|
|||
bt_test_suite(t_match_inner_net, "Testing random inner prefix matching");
|
||||
bt_test_suite(t_match_outer_net, "Testing random outer prefix matching");
|
||||
bt_test_suite(t_trie_same, "A trie filled forward should be same with a trie filled backward.");
|
||||
bt_test_suite(t_trie_walk, "Testing TRIE_WALK() on random tries");
|
||||
|
||||
// bt_test_suite(t_bench_trie_datasets_subset, "Benchmark tries from datasets by random subset of nets");
|
||||
// bt_test_suite(t_bench_trie_datasets_random, "Benchmark tries from datasets by generated addresses");
|
||||
|
|
Loading…
Reference in a new issue