Minor changes to SHA hash functions

This commit is contained in:
Ondrej Zajicek (work) 2015-11-24 13:47:28 +01:00
parent 12d752ef24
commit 5126380bea
7 changed files with 518 additions and 521 deletions

View file

@ -30,6 +30,7 @@
#define MAX(a,b) MAX_(a,b)
#endif
#define U64(c) UINT64_C(c)
#define ABS(a) ((a)>=0 ? (a) : -(a))
#define DELTA(a,b) (((a)>=(b))?(a)-(b):(b)-(a))
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(*(a)))

View file

@ -15,33 +15,35 @@
#include "lib/sha1.h"
#include "lib/unaligned.h"
void
sha1_init(struct sha1_context *hd)
sha1_init(struct sha1_context *ctx)
{
hd->h0 = 0x67452301;
hd->h1 = 0xefcdab89;
hd->h2 = 0x98badcfe;
hd->h3 = 0x10325476;
hd->h4 = 0xc3d2e1f0;
hd->nblocks = 0;
hd->count = 0;
ctx->h0 = 0x67452301;
ctx->h1 = 0xefcdab89;
ctx->h2 = 0x98badcfe;
ctx->h3 = 0x10325476;
ctx->h4 = 0xc3d2e1f0;
ctx->nblocks = 0;
ctx->count = 0;
}
/*
* Transform the message X which consists of 16 32-bit-words
*/
static void
sha1_transform(struct sha1_context *hd, const byte *data)
sha1_transform(struct sha1_context *ctx, const byte *data)
{
u32 a,b,c,d,e,tm;
u32 x[16];
/* Get values from the chaining vars. */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
a = ctx->h0;
b = ctx->h1;
c = ctx->h2;
d = ctx->h3;
e = ctx->h4;
#ifdef CPU_BIG_ENDIAN
memcpy(x, data, 64);
@ -69,7 +71,7 @@ sha1_transform(struct sha1_context *hd, const byte *data)
do \
{ \
e += ROL(a, 5) + f(b, c, d) + k + m; \
b = ROL( b, 30 ); \
b = ROL(b, 30); \
} while(0)
R( a, b, c, d, e, F1, K1, x[ 0] );
@ -154,72 +156,72 @@ sha1_transform(struct sha1_context *hd, const byte *data)
R( b, c, d, e, a, F4, K4, M(79) );
/* Update chaining vars. */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
ctx->h0 += a;
ctx->h1 += b;
ctx->h2 += c;
ctx->h3 += d;
ctx->h4 += e;
}
/*
* Update the message digest with the contents
* of INBUF with length INLEN.
* Update the message digest with the contents of BUF with length LEN.
*/
void
sha1_update(struct sha1_context *hd, const byte *inbuf, uint inlen)
sha1_update(struct sha1_context *ctx, const byte *buf, uint len)
{
if (hd->count == 64) /* flush the buffer */
if (ctx->count)
{
sha1_transform(hd, hd->buf);
hd->count = 0;
hd->nblocks++;
/* Fill rest of internal buffer */
for (; len && ctx->count < SHA1_BLOCK_SIZE; len--)
ctx->buf[ctx->count++] = *buf++;
if (ctx->count < SHA1_BLOCK_SIZE)
return;
/* Process data from internal buffer */
sha1_transform(ctx, ctx->buf);
ctx->nblocks++;
ctx->count = 0;
}
if (!inbuf)
if (!len)
return;
if (hd->count)
/* Process data from input buffer */
while (len >= SHA1_BLOCK_SIZE)
{
for (; inlen && hd->count < 64; inlen--)
hd->buf[hd->count++] = *inbuf++;
sha1_update( hd, NULL, 0 );
if(!inlen)
return;
sha1_transform(ctx, buf);
ctx->nblocks++;
buf += SHA1_BLOCK_SIZE;
len -= SHA1_BLOCK_SIZE;
}
while (inlen >= 64)
{
sha1_transform(hd, inbuf);
hd->count = 0;
hd->nblocks++;
inlen -= 64;
inbuf += 64;
}
for (; inlen && hd->count < 64; inlen--)
hd->buf[hd->count++] = *inbuf++;
/* Copy remaining data to internal buffer */
memcpy(ctx->buf, buf, len);
ctx->count = len;
}
/*
* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* The routine final terminates the computation and returns the digest. The
* handle is prepared for a new cycle, but adding bytes to the handle will the
* destroy the returned buffer.
*
* Returns: 20 bytes representing the digest.
*/
byte *
sha1_final(struct sha1_context *hd)
sha1_final(struct sha1_context *ctx)
{
u32 t, msb, lsb;
u32 *p;
sha1_update(hd, NULL, 0); /* flush */;
sha1_update(ctx, NULL, 0); /* flush */
t = hd->nblocks;
t = ctx->nblocks;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = t >> 26;
/* add the count */
t = lsb;
if ((lsb += hd->count) < t)
if ((lsb += ctx->count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
@ -227,33 +229,36 @@ sha1_final(struct sha1_context *hd)
msb <<= 3;
msb |= t >> 29;
if (hd->count < 56) /* enough room */
if (ctx->count < 56)
{
hd->buf[hd->count++] = 0x80; /* pad */
while (hd->count < 56)
hd->buf[hd->count++] = 0; /* pad */
/* enough room */
ctx->buf[ctx->count++] = 0x80; /* pad */
while (ctx->count < 56)
ctx->buf[ctx->count++] = 0; /* pad */
}
else /* need one extra block */
else
{
hd->buf[hd->count++] = 0x80; /* pad character */
while (hd->count < 64)
hd->buf[hd->count++] = 0;
sha1_update(hd, NULL, 0); /* flush */;
memset(hd->buf, 0, 56 ); /* fill next block with zeroes */
/* need one extra block */
ctx->buf[ctx->count++] = 0x80; /* pad character */
while (ctx->count < 64)
ctx->buf[ctx->count++] = 0;
sha1_update(ctx, NULL, 0); /* flush */
memset(ctx->buf, 0, 56); /* fill next block with zeroes */
}
/* append the 64 bit count */
hd->buf[56] = msb >> 24;
hd->buf[57] = msb >> 16;
hd->buf[58] = msb >> 8;
hd->buf[59] = msb ;
hd->buf[60] = lsb >> 24;
hd->buf[61] = lsb >> 16;
hd->buf[62] = lsb >> 8;
hd->buf[63] = lsb ;
sha1_transform(hd, hd->buf);
p = (u32*) hd->buf;
#define X(a) do { put_u32(p, hd->h##a); p++; } while(0)
/* append the 64 bit count */
ctx->buf[56] = msb >> 24;
ctx->buf[57] = msb >> 16;
ctx->buf[58] = msb >> 8;
ctx->buf[59] = msb;
ctx->buf[60] = lsb >> 24;
ctx->buf[61] = lsb >> 16;
ctx->buf[62] = lsb >> 8;
ctx->buf[63] = lsb;
sha1_transform(ctx, ctx->buf);
byte *p = ctx->buf;
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
X(0);
X(1);
X(2);
@ -261,12 +266,12 @@ sha1_final(struct sha1_context *hd)
X(4);
#undef X
return hd->buf;
return ctx->buf;
}
/*
* SHA1-HMAC
* SHA1-HMAC
*/
/*
@ -292,12 +297,12 @@ sha1_hmac_init(struct sha1_hmac_context *ctx, const byte *key, uint keylen)
if (keylen <= SHA1_BLOCK_SIZE)
{
memcpy(keybuf, key, keylen);
bzero(keybuf + keylen, SHA1_BLOCK_SIZE - keylen);
memset(keybuf + keylen, 0, SHA1_BLOCK_SIZE - keylen);
}
else
{
sha1_hash_buffer(keybuf, key, keylen);
bzero(keybuf + SHA1_SIZE, SHA1_BLOCK_SIZE - SHA1_SIZE);
memset(keybuf + SHA1_SIZE, 0, SHA1_BLOCK_SIZE - SHA1_SIZE);
}
/* Initialize the inner digest */
@ -321,7 +326,8 @@ sha1_hmac_update(struct sha1_hmac_context *ctx, const byte *data, uint datalen)
sha1_update(&ctx->ictx, data, datalen);
}
byte *sha1_hmac_final(struct sha1_hmac_context *ctx)
byte *
sha1_hmac_final(struct sha1_hmac_context *ctx)
{
/* Finish the inner digest */
byte *isha = sha1_final(&ctx->ictx);
@ -334,9 +340,9 @@ byte *sha1_hmac_final(struct sha1_hmac_context *ctx)
void
sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen)
{
struct sha1_hmac_context hd;
sha1_hmac_init(&hd, key, keylen);
sha1_hmac_update(&hd, data, datalen);
byte *osha = sha1_hmac_final(&hd);
memcpy(outbuf, osha, SHA1_SIZE);
struct sha1_hmac_context ctx;
sha1_hmac_init(&ctx, key, keylen);
sha1_hmac_update(&ctx, data, datalen);
memcpy(outbuf, sha1_hmac_final(&ctx), SHA1_SIZE);
}

View file

@ -17,70 +17,70 @@
#include "nest/bird.h"
#define SHA1_SIZE 20 /* Size of the SHA1 hash in its binary representation */
#define SHA1_HEX_SIZE 41 /* Buffer length for a string containing SHA1 in hexadecimal format. */
#define SHA1_BLOCK_SIZE 64 /* SHA1 splits input to blocks of this size. */
/*
* Internal SHA1 state.
* You should use it just as an opaque handle only.
*/
struct sha1_context {
u32 h0,h1,h2,h3,h4;
u32 nblocks;
byte buf[64];
int count;
} ;
u32 h0, h1, h2, h3, h4;
byte buf[SHA1_BLOCK_SIZE];
uint nblocks;
uint count;
};
void sha1_init(struct sha1_context *hd); /* Initialize new algorithm run in the @hd context. **/
void sha1_init(struct sha1_context *ctx); /* Initialize new algorithm run in the @ctx context. **/
/*
* Push another @inlen bytes of data pointed to by @inbuf onto the
* SHA1 hash currently in @hd. You can call this any times you want on
* the same hash (and you do not need to reinitialize it by
* @sha1_init()). It has the same effect as concatenating all the data
* together and passing them at once.
* Push another @len bytes of data pointed to by @buf onto the SHA1 hash
* currently in @ctx. You can call this any times you want on the same hash (and
* you do not need to reinitialize it by @sha1_init()). It has the same effect
* as concatenating all the data together and passing them at once.
*/
void sha1_update(struct sha1_context *hd, const byte *inbuf, uint inlen);
void sha1_update(struct sha1_context *ctx, const byte *buf, uint len);
/*
* No more @sha1_update() calls will be done. This terminates the hash
* and returns a pointer to it.
* No more @sha1_update() calls will be done. This terminates the hash and
* returns a pointer to it.
*
* Note that the pointer points into data in the @hd context. If it ceases
* to exist, the pointer becomes invalid.
*
* To convert the hash to its usual hexadecimal representation, see
* <<string:mem_to_hex()>>.
* Note that the pointer points into data in the @ctx context. If it ceases to
* exist, the pointer becomes invalid.
*/
byte *sha1_final(struct sha1_context *hd);
byte *sha1_final(struct sha1_context *ctx);
/*
* A convenience one-shot function for SHA1 hash.
* It is equivalent to this snippet of code:
* A convenience one-shot function for SHA1 hash. It is equivalent to this
* snippet of code:
*
* sha1_context hd;
* sha1_init(&hd);
* sha1_update(&hd, buffer, length);
* memcpy(outbuf, sha1_final(&hd), SHA1_SIZE);
* sha1_context ctx;
* sha1_init(&ctx);
* sha1_update(&ctx, buffer, length);
* memcpy(outbuf, sha1_final(&ctx), SHA1_SIZE);
*/
void sha1_hash_buffer(byte *outbuf, const byte *buffer, uint length);
/*
* SHA1 HMAC message authentication. If you provide @key and @data,
* the result will be stored in @outbuf.
* SHA1 HMAC message authentication. If you provide @key and @data, the result
* will be stored in @outbuf.
*/
void sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen);
/*
* The HMAC also exists in a stream version in a way analogous to the
* plain SHA1. Pass this as a context.
* The HMAC also exists in a stream version in a way analogous to the plain
* SHA1. Pass this as a context.
*/
struct sha1_hmac_context {
struct sha1_context ictx;
struct sha1_context octx;
};
void sha1_hmac_init(struct sha1_hmac_context *hd, const byte *key, uint keylen); /* Initialize HMAC with context @hd and the given key. See sha1_init(). */
void sha1_hmac_update(struct sha1_hmac_context *hd, const byte *data, uint datalen); /* Hash another @datalen bytes of data. See sha1_update(). */
byte *sha1_hmac_final(struct sha1_hmac_context *hd); /* Terminate the HMAC and return a pointer to the allocated hash. See sha1_final(). */
void sha1_hmac_init(struct sha1_hmac_context *ctx, const byte *key, uint keylen); /* Initialize HMAC with context @ctx and the given key. See sha1_init(). */
void sha1_hmac_update(struct sha1_hmac_context *ctx, const byte *data, uint datalen); /* Hash another @datalen bytes of data. See sha1_update(). */
byte *sha1_hmac_final(struct sha1_hmac_context *ctx); /* Terminate the HMAC and return a pointer to the allocated hash. See sha1_final(). */
#define SHA1_SIZE 20 /* Size of the SHA1 hash in its binary representation **/
#define SHA1_HEX_SIZE 41 /* Buffer length for a string containing SHA1 in hexadecimal format. **/
#define SHA1_BLOCK_SIZE 64 /* SHA1 splits input to blocks of this size. **/
#endif /* _BIRD_SHA1_H_ */

View file

@ -13,7 +13,8 @@
#include "lib/sha256.h"
#include "lib/unaligned.h"
static uint sha256_transform(void *ctx, const byte *data, size_t nblks);
// #define SHA256_UNROLLED
void
sha256_init(struct sha256_context *ctx)
@ -28,10 +29,7 @@ sha256_init(struct sha256_context *ctx)
ctx->h7 = 0x5be0cd19;
ctx->nblocks = 0;
ctx->nblocks_high = 0;
ctx->count = 0;
ctx->blocksize = 64;
ctx->transform = sha256_transform;
}
void
@ -47,10 +45,7 @@ sha224_init(struct sha224_context *ctx)
ctx->h7 = 0xbefa4fa4;
ctx->nblocks = 0;
ctx->nblocks_high = 0;
ctx->count = 0;
ctx->blocksize = 64;
ctx->transform = sha256_transform;
}
/* (4.2) same as SHA-1's F1. */
@ -70,7 +65,7 @@ f3(u32 x, u32 y, u32 z)
/* Bitwise rotation of an uint to the right */
static inline u32 ror(u32 x, int n)
{
return ( (x >> (n&(32-1))) | (x << ((32-n)&(32-1))) );
return ((x >> (n&(32-1))) | (x << ((32-n)&(32-1))));
}
/* (4.4) */
@ -112,7 +107,7 @@ sum1(u32 x)
32-bit-words. See FIPS 180-2 for details.
*/
static uint
sha256_transform_block(struct sha256_context *ctx, const byte *data)
sha256_transform(struct sha256_context *ctx, const byte *data)
{
static const u32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
@ -148,52 +143,58 @@ sha256_transform_block(struct sha256_context *ctx, const byte *data)
for (i = 0; i < 16; i++)
w[i] = get_u32(data + i * 4);
for (; i < 64; i++)
w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16];
for (i = 0; i < 64;)
{
#ifndef SHA256_UNROLLED
R(a,b,c,d,e,f,g,h,K[i],w[i]);
i++;
#else /* Unrolled */
t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i];
t2 = sum0 (a) + f3(a, b, c);
t2 = sum0(a) + f3(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1];
t2 = sum0 (h) + f3(h, a, b);
t2 = sum0(h) + f3(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2];
t2 = sum0 (g) + f3(g, h, a);
t2 = sum0(g) + f3(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3];
t2 = sum0 (f) + f3(f, g, h);
t2 = sum0(f) + f3(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4];
t2 = sum0 (e) + f3(e, f, g);
t2 = sum0(e) + f3(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5];
t2 = sum0 (d) + f3(d, e, f);
t2 = sum0(d) + f3(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6];
t2 = sum0 (c) + f3(c, d, e);
t2 = sum0(c) + f3(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7];
t2 = sum0 (b) + f3(b, c, d);
t2 = sum0(b) + f3(b, c, d);
e += t1;
a = t1 + t2;
i += 8;
#endif
}
ctx->h0 += a;
@ -211,22 +212,6 @@ sha256_transform_block(struct sha256_context *ctx, const byte *data)
#undef S1
#undef R
static uint
sha256_transform(void *ctx, const byte *data, size_t nblks)
{
struct sha256_context *hd = ctx;
uint burn;
do
{
burn = sha256_transform_block(hd, data);
data += 64;
}
while (--nblks);
return burn;
}
/* Common function to write a chunk of data to the transform function
of a hash algorithm. Note that the use of the term "block" does
not imply a fixed size block. Note that we explicitly allow to use
@ -234,65 +219,56 @@ sha256_transform(void *ctx, const byte *data, size_t nblks)
not have any meaning but writing after finalize is sometimes
helpful to mitigate timing attacks. */
void
sha256_update(struct sha256_context *ctx, const byte *in_buf, size_t in_len)
sha256_update(struct sha256_context *ctx, const byte *buf, size_t len)
{
const uint blocksize = ctx->blocksize;
size_t inblocks;
if (sizeof(ctx->buf) < blocksize)
debug("BUG: in file %s at line %d", __FILE__ , __LINE__);
if (ctx->count == blocksize) /* Flush the buffer. */
{
ctx->transform(ctx, ctx->buf, 1);
ctx->count = 0;
if (!++ctx->nblocks)
ctx->nblocks_high++;
}
if (!in_buf)
return;
if (ctx->count)
{
for (; in_len && ctx->count < blocksize; in_len--)
ctx->buf[ctx->count++] = *in_buf++;
sha256_update(ctx, NULL, 0);
if (!in_len)
/* Fill rest of internal buffer */
for (; len && ctx->count < SHA256_BLOCK_SIZE; len--)
ctx->buf[ctx->count++] = *buf++;
if (ctx->count < SHA256_BLOCK_SIZE)
return;
/* Process data from internal buffer */
sha256_transform(ctx, ctx->buf);
ctx->nblocks++;
ctx->count = 0;
}
if (in_len >= blocksize)
if (!len)
return;
/* Process data from input buffer */
while (len >= SHA256_BLOCK_SIZE)
{
inblocks = in_len / blocksize;
ctx->transform(ctx, in_buf, inblocks);
ctx->count = 0;
ctx->nblocks_high += (ctx->nblocks + inblocks < inblocks);
ctx->nblocks += inblocks;
in_len -= inblocks * blocksize;
in_buf += inblocks * blocksize;
sha256_transform(ctx, buf);
ctx->nblocks++;
buf += SHA256_BLOCK_SIZE;
len -= SHA256_BLOCK_SIZE;
}
for (; in_len && ctx->count < blocksize; in_len--)
ctx->buf[ctx->count++] = *in_buf++;
/* Copy remaining data to internal buffer */
memcpy(ctx->buf, buf, len);
ctx->count = len;
}
/*
The routine finally terminates the computation and returns the
digest. The handle is prepared for a new cycle, but adding bytes
to the handle will the destroy the returned buffer. Returns: 32
bytes with the message the digest. */
byte*
* The routine finally terminates the computation and returns the digest. The
* handle is prepared for a new cycle, but adding bytes to the handle will the
* destroy the returned buffer.
*
* Returns: 32 bytes with the message the digest. 28 bytes for SHA-224.
*/
byte *
sha256_final(struct sha256_context *ctx)
{
u32 t, th, msb, lsb;
byte *p;
sha256_update(ctx, NULL, 0); /* flush */;
sha256_update(ctx, NULL, 0); /* flush */
t = ctx->nblocks;
if (sizeof t == sizeof ctx->nblocks)
th = ctx->nblocks_high;
else
th = 0;
th = 0;
/* multiply by 64 to make a byte count */
lsb = t << 6;
@ -308,26 +284,28 @@ sha256_final(struct sha256_context *ctx)
msb |= t >> 29;
if (ctx->count < 56)
{ /* enough room */
{
/* enough room */
ctx->buf[ctx->count++] = 0x80; /* pad */
while (ctx->count < 56)
ctx->buf[ctx->count++] = 0; /* pad */
}
else
{ /* need one extra block */
{
/* need one extra block */
ctx->buf[ctx->count++] = 0x80; /* pad character */
while (ctx->count < 64)
ctx->buf[ctx->count++] = 0;
sha256_update(ctx, NULL, 0); /* flush */;
memset (ctx->buf, 0, 56 ); /* fill next block with zeroes */
memset(ctx->buf, 0, 56 ); /* fill next block with zeroes */
}
/* append the 64 bit count */
put_u32(ctx->buf + 56, msb);
put_u32(ctx->buf + 60, lsb);
sha256_transform(ctx, ctx->buf, 1);
p = ctx->buf;
sha256_transform(ctx, ctx->buf);
byte *p = ctx->buf;
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
X(0);
X(1);
@ -344,17 +322,17 @@ sha256_final(struct sha256_context *ctx)
/*
* SHA256-HMAC
* SHA256-HMAC
*/
static void
sha256_hash_buffer(byte *outbuf, const byte *buffer, size_t length)
{
struct sha256_context hd_tmp;
struct sha256_context ctx;
sha256_init(&hd_tmp);
sha256_update(&hd_tmp, buffer, length);
memcpy(outbuf, sha256_final(&hd_tmp), SHA256_SIZE);
sha256_init(&ctx);
sha256_update(&ctx, buffer, length);
memcpy(outbuf, sha256_final(&ctx), SHA256_SIZE);
}
void
@ -366,12 +344,12 @@ sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen
if (keylen <= SHA256_BLOCK_SIZE)
{
memcpy(keybuf, key, keylen);
bzero(keybuf + keylen, SHA256_BLOCK_SIZE - keylen);
memset(keybuf + keylen, 0, SHA256_BLOCK_SIZE - keylen);
}
else
{
sha256_hash_buffer(keybuf, key, keylen);
bzero(keybuf + SHA256_SIZE, SHA256_BLOCK_SIZE - SHA256_SIZE);
memset(keybuf + SHA256_SIZE, 0, SHA256_BLOCK_SIZE - SHA256_SIZE);
}
/* Initialize the inner digest */
@ -388,13 +366,15 @@ sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen
sha256_update(&ctx->octx, buf, SHA256_BLOCK_SIZE);
}
void sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen)
void
sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen)
{
/* Just update the inner digest */
sha256_update(&ctx->ictx, buf, buflen);
}
byte *sha256_hmac_final(struct sha256_hmac_context *ctx)
byte *
sha256_hmac_final(struct sha256_hmac_context *ctx)
{
/* Finish the inner digest */
byte *isha = sha256_final(&ctx->ictx);
@ -406,17 +386,17 @@ byte *sha256_hmac_final(struct sha256_hmac_context *ctx)
/*
* SHA224-HMAC
* SHA224-HMAC
*/
static void
sha224_hash_buffer(byte *outbuf, const byte *buffer, size_t length)
{
struct sha224_context hd_tmp;
struct sha224_context ctx;
sha224_init(&hd_tmp);
sha224_update(&hd_tmp, buffer, length);
memcpy(outbuf, sha224_final(&hd_tmp), SHA224_SIZE);
sha224_init(&ctx);
sha224_update(&ctx, buffer, length);
memcpy(outbuf, sha224_final(&ctx), SHA224_SIZE);
}
void
@ -428,12 +408,12 @@ sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen
if (keylen <= SHA224_BLOCK_SIZE)
{
memcpy(keybuf, key, keylen);
bzero(keybuf + keylen, SHA224_BLOCK_SIZE - keylen);
memset(keybuf + keylen, 0, SHA224_BLOCK_SIZE - keylen);
}
else
{
sha224_hash_buffer(keybuf, key, keylen);
bzero(keybuf + SHA224_SIZE, SHA224_BLOCK_SIZE - SHA224_SIZE);
memset(keybuf + SHA224_SIZE, 0, SHA224_BLOCK_SIZE - SHA224_SIZE);
}
/* Initialize the inner digest */
@ -450,13 +430,15 @@ sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen
sha224_update(&ctx->octx, buf, SHA224_BLOCK_SIZE);
}
void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen)
void
sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen)
{
/* Just update the inner digest */
sha256_update(&ctx->ictx, buf, buflen);
}
byte *sha224_hmac_final(struct sha224_hmac_context *ctx)
byte *
sha224_hmac_final(struct sha224_hmac_context *ctx)
{
/* Finish the inner digest */
byte *isha = sha224_final(&ctx->ictx);

View file

@ -15,6 +15,7 @@
#include "nest/bird.h"
#define SHA224_SIZE 28
#define SHA224_HEX_SIZE 57
#define SHA224_BLOCK_SIZE 64
@ -23,44 +24,44 @@
#define SHA256_HEX_SIZE 65
#define SHA256_BLOCK_SIZE 64
struct sha256_context {
u32 h0,h1,h2,h3,h4,h5,h6,h7;
byte buf[128]; /* 128 is for SHA384 and SHA512 support, otherwise for SHA224 and SHA256 is 64 enough */
u32 nblocks;
u32 nblocks_high;
int count;
u32 blocksize;
uint (*transform)(void *c, const byte *blks, size_t nblks);
u32 h0, h1, h2, h3, h4, h5, h6, h7;
byte buf[SHA256_BLOCK_SIZE];
uint nblocks;
uint count;
};
#define sha224_context sha256_context /* aliasing 'struct sha224_context' to 'struct sha256_context' */
#define sha224_context sha256_context
void sha256_init(struct sha256_context *ctx);
void sha224_init(struct sha224_context *ctx);
void sha256_update(struct sha256_context *ctx, const byte *in_buf, size_t in_len);
static inline void sha224_update(struct sha224_context *ctx, const byte *in_buf, size_t in_len)
{
sha256_update(ctx, in_buf, in_len);
}
void sha256_update(struct sha256_context *ctx, const byte *buf, size_t len);
static inline void sha224_update(struct sha224_context *ctx, const byte *buf, size_t len)
{ sha256_update(ctx, buf, len); }
byte *sha256_final(struct sha256_context *ctx);
static inline byte *sha224_final(struct sha224_context *ctx)
{ return sha256_final(ctx); }
byte* sha256_final(struct sha256_context *ctx);
static inline byte* sha224_final(struct sha224_context *ctx)
{
return sha256_final(ctx);
}
/*
* HMAC-SHA256, HMAC-SHA224
*/
struct sha256_hmac_context
{
struct sha256_context ictx;
struct sha256_context octx;
};
#define sha224_hmac_context sha256_hmac_context /* aliasing 'struct sha224_hmac_context' to 'struct sha256_hmac_context' */
#define sha224_hmac_context sha256_hmac_context
void sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen);
void sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen);
void sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen);
void sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen);
void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen);
@ -68,4 +69,5 @@ void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t
byte *sha256_hmac_final(struct sha256_hmac_context *ctx);
byte *sha224_hmac_final(struct sha224_hmac_context *ctx);
#endif /* _BIRD_SHA256_H_ */

View file

@ -10,57 +10,42 @@
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include "lib/sha256.h"
#include "lib/sha512.h"
#include "lib/unaligned.h"
static uint sha512_transform(void *context, const byte *data, size_t nblks);
// #define SHA512_UNROLLED
void
sha512_init(struct sha512_context *ctx)
{
struct sha512_state *hd = &ctx->state;
ctx->h0 = U64(0x6a09e667f3bcc908);
ctx->h1 = U64(0xbb67ae8584caa73b);
ctx->h2 = U64(0x3c6ef372fe94f82b);
ctx->h3 = U64(0xa54ff53a5f1d36f1);
ctx->h4 = U64(0x510e527fade682d1);
ctx->h5 = U64(0x9b05688c2b3e6c1f);
ctx->h6 = U64(0x1f83d9abfb41bd6b);
ctx->h7 = U64(0x5be0cd19137e2179);
hd->h0 = UINT64_C(0x6a09e667f3bcc908);
hd->h1 = UINT64_C(0xbb67ae8584caa73b);
hd->h2 = UINT64_C(0x3c6ef372fe94f82b);
hd->h3 = UINT64_C(0xa54ff53a5f1d36f1);
hd->h4 = UINT64_C(0x510e527fade682d1);
hd->h5 = UINT64_C(0x9b05688c2b3e6c1f);
hd->h6 = UINT64_C(0x1f83d9abfb41bd6b);
hd->h7 = UINT64_C(0x5be0cd19137e2179);
ctx->bctx.nblocks = 0;
ctx->bctx.nblocks_high = 0;
ctx->bctx.count = 0;
ctx->bctx.blocksize = 128;
ctx->bctx.transform = sha512_transform;
ctx->nblocks = 0;
ctx->count = 0;
}
void
sha384_init(struct sha384_context *ctx)
{
struct sha512_state *hd = &ctx->state;
ctx->h0 = U64(0xcbbb9d5dc1059ed8);
ctx->h1 = U64(0x629a292a367cd507);
ctx->h2 = U64(0x9159015a3070dd17);
ctx->h3 = U64(0x152fecd8f70e5939);
ctx->h4 = U64(0x67332667ffc00b31);
ctx->h5 = U64(0x8eb44a8768581511);
ctx->h6 = U64(0xdb0c2e0d64f98fa7);
ctx->h7 = U64(0x47b5481dbefa4fa4);
hd->h0 = UINT64_C(0xcbbb9d5dc1059ed8);
hd->h1 = UINT64_C(0x629a292a367cd507);
hd->h2 = UINT64_C(0x9159015a3070dd17);
hd->h3 = UINT64_C(0x152fecd8f70e5939);
hd->h4 = UINT64_C(0x67332667ffc00b31);
hd->h5 = UINT64_C(0x8eb44a8768581511);
hd->h6 = UINT64_C(0xdb0c2e0d64f98fa7);
hd->h7 = UINT64_C(0x47b5481dbefa4fa4);
ctx->bctx.nblocks = 0;
ctx->bctx.nblocks_high = 0;
ctx->bctx.count = 0;
ctx->bctx.blocksize = 128;
ctx->bctx.transform = sha512_transform;
}
void sha512_update(struct sha512_context *ctx, const byte *in_buf, size_t in_len)
{
sha256_update(&ctx->bctx, in_buf, in_len);
ctx->nblocks = 0;
ctx->count = 0;
}
static inline u64
@ -82,82 +67,82 @@ Maj(u64 x, u64 y, u64 z)
}
static inline u64
Sum0(u64 x)
sum0(u64 x)
{
return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39));
return (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39));
}
static inline u64
Sum1 (u64 x)
sum1(u64 x)
{
return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41));
return (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41));
}
static const u64 k[] =
{
UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
};
/*
* Transform the message W which consists of 16 64-bit-words
*/
static uint
sha512_transform_block(struct sha512_state *hd, const byte *data)
sha512_transform(struct sha512_context *ctx, const byte *data)
{
u64 a, b, c, d, e, f, g, h;
u64 w[16];
int t;
uint t;
/* get values from the chaining vars */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
a = ctx->h0;
b = ctx->h1;
c = ctx->h2;
d = ctx->h3;
e = ctx->h4;
f = ctx->h5;
g = ctx->h6;
h = ctx->h7;
for ( t = 0; t < 16; t++ )
for (t = 0; t < 16; t++)
w[t] = get_u64(data + t * 8);
#define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
@ -175,10 +160,10 @@ sha512_transform_block(struct sha512_state *hd, const byte *data)
Unrolled with macros: 350ms
Unrolled with inline: 330ms
*/
#if 0 /* Not unrolled. */
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16];
w[t%16] += S1 (w[(t - 2)%16]) + w[(t - 7)%16] + S0 (w[(t - 15)%16]);
t2 = Sum0 (a) + Maj(a, b, c);
#ifndef SHA512_UNROLLED
t1 = h + sum1(e) + Ch(e, f, g) + k[t] + w[t%16];
w[t%16] += S1(w[(t - 2)%16]) + w[(t - 7)%16] + S0(w[(t - 15)%16]);
t2 = sum0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
@ -188,100 +173,100 @@ sha512_transform_block(struct sha512_state *hd, const byte *data)
b = a;
a = t1 + t2;
t++;
#else /* Unrolled to interweave the chain variables. */
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0];
w[0] += S1 (w[14]) + w[9] + S0 (w[1]);
t2 = Sum0 (a) + Maj(a, b, c);
#else /* Unrolled */
t1 = h + sum1(e) + Ch(e, f, g) + k[t] + w[0];
w[0] += S1(w[14]) + w[9] + S0(w[1]);
t2 = sum0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1];
w[1] += S1 (w[15]) + w[10] + S0 (w[2]);
t2 = Sum0 (h) + Maj(h, a, b);
t1 = g + sum1(d) + Ch(d, e, f) + k[t+1] + w[1];
w[1] += S1(w[15]) + w[10] + S0(w[2]);
t2 = sum0(h) + Maj(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2];
w[2] += S1 (w[0]) + w[11] + S0 (w[3]);
t2 = Sum0 (g) + Maj(g, h, a);
t1 = f + sum1(c) + Ch(c, d, e) + k[t+2] + w[2];
w[2] += S1(w[0]) + w[11] + S0(w[3]);
t2 = sum0(g) + Maj(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3];
w[3] += S1 (w[1]) + w[12] + S0 (w[4]);
t2 = Sum0 (f) + Maj(f, g, h);
t1 = e + sum1(b) + Ch(b, c, d) + k[t+3] + w[3];
w[3] += S1(w[1]) + w[12] + S0(w[4]);
t2 = sum0(f) + Maj(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4];
w[4] += S1 (w[2]) + w[13] + S0 (w[5]);
t2 = Sum0 (e) + Maj(e, f, g);
t1 = d + sum1(a) + Ch(a, b, c) + k[t+4] + w[4];
w[4] += S1(w[2]) + w[13] + S0(w[5]);
t2 = sum0(e) + Maj(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5];
w[5] += S1 (w[3]) + w[14] + S0 (w[6]);
t2 = Sum0 (d) + Maj(d, e, f);
t1 = c + sum1(h) + Ch(h, a, b) + k[t+5] + w[5];
w[5] += S1(w[3]) + w[14] + S0(w[6]);
t2 = sum0(d) + Maj(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6];
w[6] += S1 (w[4]) + w[15] + S0 (w[7]);
t2 = Sum0 (c) + Maj(c, d, e);
t1 = b + sum1(g) + Ch(g, h, a) + k[t+6] + w[6];
w[6] += S1(w[4]) + w[15] + S0(w[7]);
t2 = sum0(c) + Maj(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7];
w[7] += S1 (w[5]) + w[0] + S0 (w[8]);
t2 = Sum0 (b) + Maj(b, c, d);
t1 = a + sum1(f) + Ch(f, g, h) + k[t+7] + w[7];
w[7] += S1(w[5]) + w[0] + S0(w[8]);
t2 = sum0(b) + Maj(b, c, d);
e += t1;
a = t1 + t2;
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8];
w[8] += S1 (w[6]) + w[1] + S0 (w[9]);
t2 = Sum0 (a) + Maj(a, b, c);
t1 = h + sum1(e) + Ch(e, f, g) + k[t+8] + w[8];
w[8] += S1(w[6]) + w[1] + S0(w[9]);
t2 = sum0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9];
w[9] += S1 (w[7]) + w[2] + S0 (w[10]);
t2 = Sum0 (h) + Maj(h, a, b);
t1 = g + sum1(d) + Ch(d, e, f) + k[t+9] + w[9];
w[9] += S1(w[7]) + w[2] + S0(w[10]);
t2 = sum0(h) + Maj(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10];
w[10] += S1 (w[8]) + w[3] + S0 (w[11]);
t2 = Sum0 (g) + Maj(g, h, a);
t1 = f + sum1(c) + Ch(c, d, e) + k[t+10] + w[10];
w[10] += S1(w[8]) + w[3] + S0(w[11]);
t2 = sum0(g) + Maj(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11];
w[11] += S1 (w[9]) + w[4] + S0 (w[12]);
t2 = Sum0 (f) + Maj(f, g, h);
t1 = e + sum1(b) + Ch(b, c, d) + k[t+11] + w[11];
w[11] += S1(w[9]) + w[4] + S0(w[12]);
t2 = sum0(f) + Maj(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12];
w[12] += S1 (w[10]) + w[5] + S0 (w[13]);
t2 = Sum0 (e) + Maj(e, f, g);
t1 = d + sum1(a) + Ch(a, b, c) + k[t+12] + w[12];
w[12] += S1(w[10]) + w[5] + S0(w[13]);
t2 = sum0(e) + Maj(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13];
w[13] += S1 (w[11]) + w[6] + S0 (w[14]);
t2 = Sum0 (d) + Maj(d, e, f);
t1 = c + sum1(h) + Ch(h, a, b) + k[t+13] + w[13];
w[13] += S1(w[11]) + w[6] + S0(w[14]);
t2 = sum0(d) + Maj(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14];
w[14] += S1 (w[12]) + w[7] + S0 (w[15]);
t2 = Sum0 (c) + Maj(c, d, e);
t1 = b + sum1(g) + Ch(g, h, a) + k[t+14] + w[14];
w[14] += S1(w[12]) + w[7] + S0(w[15]);
t2 = sum0(c) + Maj(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15];
w[15] += S1 (w[13]) + w[8] + S0 (w[0]);
t2 = Sum0 (b) + Maj(b, c, d);
t1 = a + sum1(f) + Ch(f, g, h) + k[t+15] + w[15];
w[15] += S1(w[13]) + w[8] + S0(w[0]);
t2 = sum0(b) + Maj(b, c, d);
e += t1;
a = t1 + t2;
@ -293,9 +278,9 @@ sha512_transform_block(struct sha512_state *hd, const byte *data)
{
u64 t1, t2;
#if 0 /* Not unrolled. */
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16];
t2 = Sum0 (a) + Maj(a, b, c);
#ifndef SHA512_UNROLLED
t1 = h + sum1(e) + Ch(e, f, g) + k[t] + w[t%16];
t2 = sum0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
@ -305,84 +290,84 @@ sha512_transform_block(struct sha512_state *hd, const byte *data)
b = a;
a = t1 + t2;
t++;
#else /* Unrolled to interweave the chain variables. */
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0];
t2 = Sum0 (a) + Maj(a, b, c);
#else /* Unrolled */
t1 = h + sum1(e) + Ch(e, f, g) + k[t] + w[0];
t2 = sum0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1];
t2 = Sum0 (h) + Maj(h, a, b);
t1 = g + sum1(d) + Ch(d, e, f) + k[t+1] + w[1];
t2 = sum0(h) + Maj(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2];
t2 = Sum0 (g) + Maj(g, h, a);
t1 = f + sum1(c) + Ch(c, d, e) + k[t+2] + w[2];
t2 = sum0(g) + Maj(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3];
t2 = Sum0 (f) + Maj(f, g, h);
t1 = e + sum1(b) + Ch(b, c, d) + k[t+3] + w[3];
t2 = sum0(f) + Maj(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4];
t2 = Sum0 (e) + Maj(e, f, g);
t1 = d + sum1(a) + Ch(a, b, c) + k[t+4] + w[4];
t2 = sum0(e) + Maj(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5];
t2 = Sum0 (d) + Maj(d, e, f);
t1 = c + sum1(h) + Ch(h, a, b) + k[t+5] + w[5];
t2 = sum0(d) + Maj(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6];
t2 = Sum0 (c) + Maj(c, d, e);
t1 = b + sum1(g) + Ch(g, h, a) + k[t+6] + w[6];
t2 = sum0(c) + Maj(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7];
t2 = Sum0 (b) + Maj(b, c, d);
t1 = a + sum1(f) + Ch(f, g, h) + k[t+7] + w[7];
t2 = sum0(b) + Maj(b, c, d);
e += t1;
a = t1 + t2;
t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8];
t2 = Sum0 (a) + Maj(a, b, c);
t1 = h + sum1(e) + Ch(e, f, g) + k[t+8] + w[8];
t2 = sum0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9];
t2 = Sum0 (h) + Maj(h, a, b);
t1 = g + sum1(d) + Ch(d, e, f) + k[t+9] + w[9];
t2 = sum0(h) + Maj(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10];
t2 = Sum0 (g) + Maj(g, h, a);
t1 = f + sum1(c) + Ch(c, d, e) + k[t+10] + w[10];
t2 = sum0(g) + Maj(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11];
t2 = Sum0 (f) + Maj(f, g, h);
t1 = e + sum1(b) + Ch(b, c, d) + k[t+11] + w[11];
t2 = sum0(f) + Maj(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12];
t2 = Sum0 (e) + Maj(e, f, g);
t1 = d + sum1(a) + Ch(a, b, c) + k[t+12] + w[12];
t2 = sum0(e) + Maj(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13];
t2 = Sum0 (d) + Maj(d, e, f);
t1 = c + sum1(h) + Ch(h, a, b) + k[t+13] + w[13];
t2 = sum0(d) + Maj(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14];
t2 = Sum0 (c) + Maj(c, d, e);
t1 = b + sum1(g) + Ch(g, h, a) + k[t+14] + w[14];
t2 = sum0(c) + Maj(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15];
t2 = Sum0 (b) + Maj(b, c, d);
t1 = a + sum1(f) + Ch(f, g, h) + k[t+15] + w[15];
t2 = sum0(b) + Maj(b, c, d);
e += t1;
a = t1 + t2;
@ -391,61 +376,77 @@ sha512_transform_block(struct sha512_state *hd, const byte *data)
}
/* Update chaining vars. */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
ctx->h0 += a;
ctx->h1 += b;
ctx->h2 += c;
ctx->h3 += d;
ctx->h4 += e;
ctx->h5 += f;
ctx->h6 += g;
ctx->h7 += h;
return /* burn_stack */ (8 + 16) * sizeof(u64) + sizeof(u32) + 3 * sizeof(void*);
}
static uint
sha512_transform(void *context, const byte *data, size_t nblks)
void
sha512_update(struct sha512_context *ctx, const byte *buf, size_t len)
{
struct sha512_context *ctx = context;
uint burn;
do
if (ctx->count)
{
burn = sha512_transform_block(&ctx->state, data) + 3 * sizeof(void*);
data += 128;
}
while(--nblks);
/* Fill rest of internal buffer */
for (; len && ctx->count < SHA512_BLOCK_SIZE; len--)
ctx->buf[ctx->count++] = *buf++;
return burn;
if (ctx->count < SHA512_BLOCK_SIZE)
return;
/* Process data from internal buffer */
sha512_transform(ctx, ctx->buf);
ctx->nblocks++;
ctx->count = 0;
}
if (!len)
return;
/* Process data from input buffer */
while (len >= SHA512_BLOCK_SIZE)
{
sha512_transform(ctx, buf);
ctx->nblocks++;
buf += SHA512_BLOCK_SIZE;
len -= SHA512_BLOCK_SIZE;
}
/* Copy remaining data to internal buffer */
memcpy(ctx->buf, buf, len);
ctx->count = len;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 64 bytes representing the digest. When used for sha384,
* we take the leftmost 48 of those bytes.
/*
* The routine final terminates the computation and returns the digest. The
* handle is prepared for a new cycle, but adding bytes to the handle will the
* destroy the returned buffer.
*
* Returns: 64 bytes representing the digest. When used for sha384, we take the
* first 48 of those bytes.
*/
byte *
sha512_final(struct sha512_context *ctx)
{
u64 t, th, msb, lsb;
byte *p;
sha256_update(&ctx->bctx, NULL, 0); /* flush */ ;
sha512_update(ctx, NULL, 0); /* flush */
t = ctx->bctx.nblocks;
/* if (sizeof t == sizeof ctx->bctx.nblocks) */
th = ctx->bctx.nblocks_high;
/* else */
/* th = ctx->bctx.nblocks >> 64; In case we ever use u128 */
t = ctx->nblocks;
th = 0;
/* multiply by 128 to make a byte count */
lsb = t << 7;
msb = (th << 7) | (t >> 57);
/* add the count */
t = lsb;
if ((lsb += ctx->bctx.count) < t)
if ((lsb += ctx->count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
@ -453,55 +454,56 @@ sha512_final(struct sha512_context *ctx)
msb <<= 3;
msb |= t >> 61;
if (ctx->bctx.count < 112)
{ /* enough room */
ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad */
while(ctx->bctx.count < 112)
ctx->bctx.buf[ctx->bctx.count++] = 0; /* pad */
if (ctx->count < 112)
{
/* enough room */
ctx->buf[ctx->count++] = 0x80; /* pad */
while(ctx->count < 112)
ctx->buf[ctx->count++] = 0; /* pad */
}
else
{ /* need one extra block */
ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad character */
while(ctx->bctx.count < 128)
ctx->bctx.buf[ctx->bctx.count++] = 0;
sha256_update(&ctx->bctx, NULL, 0); /* flush */ ;
memset(ctx->bctx.buf, 0, 112); /* fill next block with zeroes */
{
/* need one extra block */
ctx->buf[ctx->count++] = 0x80; /* pad character */
while(ctx->count < 128)
ctx->buf[ctx->count++] = 0;
sha512_update(ctx, NULL, 0); /* flush */
memset(ctx->buf, 0, 112); /* fill next block with zeroes */
}
/* append the 128 bit count */
put_u64(ctx->bctx.buf + 112, msb);
put_u64(ctx->bctx.buf + 120, lsb);
sha512_transform(ctx, ctx->bctx.buf, 1);
p = ctx->bctx.buf;
#define X(a) do { put_u64(p, ctx->state.h##a); p += 8; } while(0)
X (0);
X (1);
X (2);
X (3);
X (4);
X (5);
/* Note that these last two chunks are included even for SHA384.
We just ignore them. */
X (6);
X (7);
/* append the 128 bit count */
put_u64(ctx->buf + 112, msb);
put_u64(ctx->buf + 120, lsb);
sha512_transform(ctx, ctx->buf);
byte *p = ctx->buf;
#define X(a) do { put_u64(p, ctx->h##a); p += 8; } while(0)
X(0);
X(1);
X(2);
X(3);
X(4);
X(5);
X(6);
X(7);
#undef X
return ctx->bctx.buf;
return ctx->buf;
}
/*
* SHA512-HMAC
* SHA512-HMAC
*/
static void
sha512_hash_buffer(byte *outbuf, const byte *buffer, size_t length)
{
struct sha512_context hd_tmp;
struct sha512_context ctx;
sha512_init(&hd_tmp);
sha512_update(&hd_tmp, buffer, length);
memcpy(outbuf, sha512_final(&hd_tmp), SHA512_SIZE);
sha512_init(&ctx);
sha512_update(&ctx, buffer, length);
memcpy(outbuf, sha512_final(&ctx), SHA512_SIZE);
}
void
@ -513,12 +515,12 @@ sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen
if (keylen <= SHA512_BLOCK_SIZE)
{
memcpy(keybuf, key, keylen);
bzero(keybuf + keylen, SHA512_BLOCK_SIZE - keylen);
memset(keybuf + keylen, 0, SHA512_BLOCK_SIZE - keylen);
}
else
{
sha512_hash_buffer(keybuf, key, keylen);
bzero(keybuf + SHA512_SIZE, SHA512_BLOCK_SIZE - SHA512_SIZE);
memset(keybuf + SHA512_SIZE, 0, SHA512_BLOCK_SIZE - SHA512_SIZE);
}
/* Initialize the inner digest */
@ -535,13 +537,15 @@ sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen
sha512_update(&ctx->octx, buf, SHA512_BLOCK_SIZE);
}
void sha512_hmac_update(struct sha512_hmac_context *ctx, const byte *buf, size_t buflen)
void
sha512_hmac_update(struct sha512_hmac_context *ctx, const byte *buf, size_t buflen)
{
/* Just update the inner digest */
sha512_update(&ctx->ictx, buf, buflen);
}
byte *sha512_hmac_final(struct sha512_hmac_context *ctx)
byte *
sha512_hmac_final(struct sha512_hmac_context *ctx)
{
/* Finish the inner digest */
byte *isha = sha512_final(&ctx->ictx);
@ -553,17 +557,17 @@ byte *sha512_hmac_final(struct sha512_hmac_context *ctx)
/*
* SHA384-HMAC
* SHA384-HMAC
*/
static void
sha384_hash_buffer(byte *outbuf, const byte *buffer, size_t length)
{
struct sha384_context hd_tmp;
struct sha384_context ctx;
sha384_init(&hd_tmp);
sha384_update(&hd_tmp, buffer, length);
memcpy(outbuf, sha384_final(&hd_tmp), SHA384_SIZE);
sha384_init(&ctx);
sha384_update(&ctx, buffer, length);
memcpy(outbuf, sha384_final(&ctx), SHA384_SIZE);
}
void
@ -575,12 +579,12 @@ sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen
if (keylen <= SHA384_BLOCK_SIZE)
{
memcpy(keybuf, key, keylen);
bzero(keybuf + keylen, SHA384_BLOCK_SIZE - keylen);
memset(keybuf + keylen, 0, SHA384_BLOCK_SIZE - keylen);
}
else
{
sha384_hash_buffer(keybuf, key, keylen);
bzero(keybuf + SHA384_SIZE, SHA384_BLOCK_SIZE - SHA384_SIZE);
memset(keybuf + SHA384_SIZE, 0, SHA384_BLOCK_SIZE - SHA384_SIZE);
}
/* Initialize the inner digest */
@ -597,13 +601,15 @@ sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen
sha384_update(&ctx->octx, buf, SHA384_BLOCK_SIZE);
}
void sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t buflen)
void
sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t buflen)
{
/* Just update the inner digest */
sha384_update(&ctx->ictx, buf, buflen);
}
byte *sha384_hmac_final(struct sha384_hmac_context *ctx)
byte *
sha384_hmac_final(struct sha384_hmac_context *ctx)
{
/* Finish the inner digest */
byte *isha = sha384_final(&ctx->ictx);

View file

@ -13,7 +13,8 @@
#ifndef _BIRD_SHA512_H_
#define _BIRD_SHA512_H_
#include "lib/sha256.h"
#include "nest/bird.h"
#define SHA384_SIZE 48
#define SHA384_HEX_SIZE 97
@ -23,43 +24,41 @@
#define SHA512_HEX_SIZE 129
#define SHA512_BLOCK_SIZE 128
struct sha512_state
{
struct sha512_context {
u64 h0, h1, h2, h3, h4, h5, h6, h7;
byte buf[SHA512_BLOCK_SIZE];
uint nblocks;
uint count;
};
struct sha512_context
{
struct sha256_context bctx;
struct sha512_state state;
};
#define sha384_context sha512_context /* aliasing 'struct sha384_context' to 'struct sha512_context' */
#define sha384_context sha512_context
void sha512_init(struct sha512_context *ctx);
void sha384_init(struct sha384_context *ctx);
void sha512_update(struct sha512_context *ctx, const byte *in_buf, size_t in_len);
static inline void sha384_update(struct sha384_context *ctx, const byte *in_buf, size_t in_len)
{
sha512_update(ctx, in_buf, in_len);
}
void sha512_update(struct sha512_context *ctx, const byte *buf, size_t len);
static inline void sha384_update(struct sha384_context *ctx, const byte *buf, size_t len)
{ sha512_update(ctx, buf, len); }
byte *sha512_final(struct sha512_context *ctx);
static inline byte *sha384_final(struct sha384_context *ctx)
{ return sha512_final(ctx); }
byte* sha512_final(struct sha512_context *ctx);
static inline byte* sha384_final(struct sha384_context *ctx)
{
return sha512_final(ctx);
}
/*
* HMAC-SHA512, HMAC-SHA384
*/
struct sha512_hmac_context
{
struct sha512_context ictx;
struct sha512_context octx;
} ;
#define sha384_hmac_context sha512_hmac_context /* aliasing 'struct sha384_hmac_context' to 'struct sha384_hmac_context' */
};
#define sha384_hmac_context sha512_hmac_context
void sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen);
void sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen);
@ -70,4 +69,5 @@ void sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t
byte *sha512_hmac_final(struct sha512_hmac_context *ctx);
byte *sha384_hmac_final(struct sha384_hmac_context *ctx);
#endif /* _BIRD_SHA512_H_ */