Filter: documentation of the M4 preprocessor

This commit is contained in:
Maria Matejka 2019-07-02 17:39:56 +02:00
parent b40c0f028f
commit 550a6488c9
2 changed files with 234 additions and 128 deletions

View file

@ -6,149 +6,70 @@ m4_divert(-1)m4_dnl
# #
# Can be freely distributed and used under the terms of the GNU GPL. # Can be freely distributed and used under the terms of the GNU GPL.
# #
# THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER.
# KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING.
# EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY.
# #
# Global Diversions: # But you're welcome to read and edit and debug if you aren't scared.
# 4 enum fi_code #
# 5 enum fi_code to string # Uncomment the following line to get exhaustive debug output.
# 6 dump line item # m4_debugmode(aceflqtx)
# 7 dump line item callers #
# 8 linearize # How it works:
# 9 same (filter comparator) # 1) Instruction to code conversion (uses diversions 100..199)
# 1 union in struct f_inst # 2) Code wrapping (uses diversions 1..99)
# 3 constructors + interpreter # 3) Final preparation (uses diversions 200..299)
# 4) Shipout
#
# See below for detailed description.
#
#
# 1) Instruction to code conversion
# The code provided in f-inst.c between consecutive INST() calls
# is interleaved for many different places. It is here processed
# and split into separate instances where split-by-instruction
# happens. These parts are stored in temporary diversions listed:
# #
# Per-inst Diversions:
# 101 content of per-inst struct # 101 content of per-inst struct
# 102 constructor arguments # 102 constructor arguments
# 103 constructor body # 103 constructor body
# 104 dump line item content # 104 dump line item content
# (there may be nothing in dump-line content and
# it must be handled specially in phase 2)
# 105 linearize body # 105 linearize body
# 106 comparator body # 106 comparator body
# 107 struct f_line_item content # 107 struct f_line_item content
# 108 interpreter body # 108 interpreter body
# #
# Final diversions # Here are macros to allow you to _divert to the right directions.
# 200+ completed text before it is flushed to output
m4_dnl m4_debugmode(aceflqtx)
m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */')
m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
m4_define(FID_STRUCT_IN, `m4_divert(101)') m4_define(FID_STRUCT_IN, `m4_divert(101)')
m4_define(FID_NEW_ARGS, `m4_divert(102)') m4_define(FID_NEW_ARGS, `m4_divert(102)')
m4_define(FID_NEW_BODY, `m4_divert(103)') m4_define(FID_NEW_BODY, `m4_divert(103)')
m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])') m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])')
m4_define(FID_LINEARIZE_BODY, `m4_divert(105)m4_define([[FID_LINEARIZE_BODY_EXISTS]])') m4_define(FID_LINEARIZE_BODY, `m4_divert(105)')
m4_define(FID_SAME_BODY, `m4_divert(106)') m4_define(FID_SAME_BODY, `m4_divert(106)')
m4_define(FID_LINE_IN, `m4_divert(107)') m4_define(FID_LINE_IN, `m4_divert(107)')
m4_define(FID_INTERPRET_BODY, `m4_divert(108)') m4_define(FID_INTERPRET_BODY, `m4_divert(108)')
m4_define(FID_ALL, `FID_INTERPRET_BODY'); # Sometimes you want slightly different code versions in different
# outputs.
# Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c)
# and put it into [[ ]] quotes if it shall contain commas.
m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])') m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])')
# In interpreter code, this is quite common.
m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])') m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])')
m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])') m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])')
# If the instruction is never converted to constant, the interpret
# code is not produced at all for constructor
m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])') m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])')
m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])') m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])')
m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[ # If the instruction has some attributes (here called members),
FID_ENUM # these are typically carried with the instruction from constructor
INST_NAME(), # to interpreter. This yields a line of code everywhere on the path.
FID_ENUM_STR # FID_MEMBER is a macro to help with this task.
[INST_NAME()] = "INST_NAME()",
FID_INST
struct {
m4_undivert(101)
} i_[[]]INST_NAME();
FID_LINE
struct {
m4_undivert(107)
} i_[[]]INST_NAME();
FID_NEW
FID_HIC(
[[
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)
);]],
[[
case INST_NAME():
#define whati (&(what->i_]]INST_NAME()[[))
m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
m4_undivert(108)
#undef whati
break;
]],
[[
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)
)
{
struct f_inst *what = fi_new(fi_code);
FID_IFCONST([[uint constargs = 1;]])
#define whati (&(what->i_]]INST_NAME()[[))
m4_undivert(103)
FID_IFCONST([[if (!constargs)]])
return what;
FID_IFCONST([[m4_undivert(108)]])
#undef whati
}
]])
FID_DUMP_CALLER
case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
FID_DUMP
m4_ifdef([[FID_DUMP_BODY_EXISTS]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
m4_undefine([[FID_DUMP_BODY_EXISTS]])
{
#define item (&(item_->i_]]INST_NAME()[[))
m4_undivert(104)
#undef item
}
FID_LINEARIZE
case INST_NAME(): {
#define whati (&(what->i_]]INST_NAME()[[))
#define item (&(dest->items[pos].i_]]INST_NAME()[[))
m4_undivert(105)
#undef whati
#undef item
dest->items[pos].fi_code = what->fi_code;
dest->items[pos].lineno = what->lineno;
break;
}
m4_undefine([[FID_LINEARIZE_BODY_EXISTS]])
FID_SAME
case INST_NAME():
#define f1 (&(f1_->i_]]INST_NAME()[[))
#define f2 (&(f2_->i_]]INST_NAME()[[))
m4_undivert(106)
#undef f1
#undef f2
break;
m4_divert(-1)FID_FLUSH(101,200)
]])')
m4_define(INST, `m4_dnl
INST_FLUSH()m4_dnl
m4_define([[INST_NAME]], [[$1]])m4_dnl
m4_define([[INST_INVAL]], [[$2]])m4_dnl
m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl
FID_ALL() m4_dnl
')
m4_define(FID_MEMBER, `m4_dnl m4_define(FID_MEMBER, `m4_dnl
FID_LINE_IN FID_LINE_IN
$1 $2; $1 $2;
@ -170,8 +91,14 @@ debug("%s$4\n", INDENT, $5);
]]) ]])
FID_INTERPRET_EXEC FID_INTERPRET_EXEC
const $1 $2 = whati->$2 const $1 $2 = whati->$2
FID_ALL') FID_INTERPRET_BODY')
# Instruction arguments are needed only until linearization is done.
# This puts the arguments into the filter line to be executed before
# the instruction itself.
#
# To achieve this, ARG_ANY must be called before anything writes into
# the instruction line as it moves the instruction pointer forward.
m4_define(ARG_ANY, ` m4_define(ARG_ANY, `
FID_STRUCT_IN FID_STRUCT_IN
struct f_inst * f$1; struct f_inst * f$1;
@ -188,14 +115,17 @@ FID_IFCONST([[
} }
FID_LINEARIZE_BODY FID_LINEARIZE_BODY
pos = linearize(dest, whati->f$1, pos); pos = linearize(dest, whati->f$1, pos);
FID_ALL()') FID_INTERPRET_BODY()')
# Some arguments need to check their type. After that, ARG_ANY is called.
m4_define(ARG, `ARG_ANY($1) m4_define(ARG, `ARG_ANY($1)
FID_INTERPRET_EXEC() FID_INTERPRET_EXEC()
if (v$1.type != $2) runtime("Argument $1 of instruction %s must be of type $2, got 0x%02x", f_instruction_name(what->fi_code), v$1.type)m4_dnl if (v$1.type != $2) runtime("Argument $1 of instruction %s must be of type $2, got 0x%02x", f_instruction_name(what->fi_code), v$1.type)m4_dnl
FID_ALL()') FID_INTERPRET_BODY()')
m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_ALL()') # Executing another filter line. This replaces the recursion
# that was needed in the former implementation.
m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()')
m4_define(LINEX_, `do { m4_define(LINEX_, `do {
fstk->estk[fstk->ecnt].pos = 0; fstk->estk[fstk->ecnt].pos = 0;
fstk->estk[fstk->ecnt].line = $1; fstk->estk[fstk->ecnt].line = $1;
@ -226,13 +156,16 @@ do { if (whati->fl$1) {
} } while(0) } } while(0)
FID_INTERPRET_NEW FID_INTERPRET_NEW
return whati->f$1 return whati->f$1
FID_ALL()') FID_INTERPRET_BODY()')
# Some of the instructions have a result. These constructions
# state the result and put it to the right place.
m4_define(RESULT, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])') m4_define(RESULT, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])')
m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]], m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]],
[[return fi_constant(what, $1)]])') [[return fi_constant(what, $1)]])')
m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])') m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])')
# Some common filter instruction members
m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym, m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym,
[[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], symbol %s, item->sym->name)') [[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], symbol %s, item->sym->name)')
m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], route table %s, item->rtc->name)') m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], route table %s, item->rtc->name)')
@ -240,13 +173,174 @@ m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f
m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)') m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)')
m4_define(ACCESS_RTE, `NEVER_CONSTANT()') m4_define(ACCESS_RTE, `NEVER_CONSTANT()')
# 2) Code wrapping
# The code produced in 1xx temporary diversions is a raw code without
# any auxiliary commands and syntactical structures around. When the
# instruction is done, INST_FLUSH is called. More precisely, it is called
# at the beginning of INST() call and at the end of file.
#
# INST_FLUSH picks all the temporary diversions, wraps their content
# into appropriate headers and structures and saves them into global
# diversions listed:
#
# 4 enum fi_code
# 5 enum fi_code to string
# 6 dump line item
# 7 dump line item callers
# 8 linearize
# 9 same (filter comparator)
# 1 union in struct f_inst
# 3 constructors + interpreter
#
# These global diversions contain blocks of code that can be directly
# put into the final file, yet it still can't be written out now as
# every instruction writes to all of these diversions.
# Code wrapping diversion names
m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */')
m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
# This macro does all the code wrapping. See inline comments.
m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
FID_ENUM m4_dnl Contents of enum fi_code { ... }
INST_NAME(),
FID_ENUM_STR m4_dnl Contents of const char * indexed by enum fi_code
[INST_NAME()] = "INST_NAME()",
FID_INST m4_dnl Anonymous structure inside struct f_inst
struct {
m4_undivert(101)
} i_[[]]INST_NAME();
FID_LINE m4_dnl Anonymous structure inside struct f_line_item
struct {
m4_undivert(107)
} i_[[]]INST_NAME();
FID_NEW m4_dnl Constructor and interpreter code together
FID_HIC(
[[ m4_dnl Public declaration of constructor in H file
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)
);]],
[[ m4_dnl The one case in The Big Switch inside interpreter
case INST_NAME():
#define whati (&(what->i_]]INST_NAME()[[))
m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
m4_undivert(108)
#undef whati
break;
]],
[[ m4_dnl Constructor itself
struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)
)
{
/* Allocate the structure */
struct f_inst *what = fi_new(fi_code);
FID_IFCONST([[uint constargs = 1;]])
/* Initialize all the members */
#define whati (&(what->i_]]INST_NAME()[[))
m4_undivert(103)
/* If not constant, return the instruction itself */
FID_IFCONST([[if (!constargs)]])
return what;
/* Try to pre-calculate the result */
FID_IFCONST([[m4_undivert(108)]])
#undef whati
}
]])
FID_DUMP_CALLER m4_dnl Case in another big switch used in instruction dumping (debug)
case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
FID_DUMP m4_dnl The dumper itself
m4_ifdef([[FID_DUMP_BODY_EXISTS]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
m4_undefine([[FID_DUMP_BODY_EXISTS]])
{
#define item (&(item_->i_]]INST_NAME()[[))
m4_undivert(104)
#undef item
}
FID_LINEARIZE m4_dnl The linearizer
case INST_NAME(): {
#define whati (&(what->i_]]INST_NAME()[[))
#define item (&(dest->items[pos].i_]]INST_NAME()[[))
m4_undivert(105)
#undef whati
#undef item
dest->items[pos].fi_code = what->fi_code;
dest->items[pos].lineno = what->lineno;
break;
}
FID_SAME m4_dnl This code compares two f_line"s while reconfiguring
case INST_NAME():
#define f1 (&(f1_->i_]]INST_NAME()[[))
#define f2 (&(f2_->i_]]INST_NAME()[[))
m4_undivert(106)
#undef f1
#undef f2
break;
m4_divert(-1)FID_FLUSH(101,200) m4_dnl And finally this flushes all the unused diversions
]])')
m4_define(INST, `m4_dnl This macro is called on beginning of each instruction.
INST_FLUSH()m4_dnl First, old data is flushed
m4_define([[INST_NAME]], [[$1]])m4_dnl Then we store instruction name,
m4_define([[INST_INVAL]], [[$2]])m4_dnl instruction input value count
m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl and reset NEVER_CONSTANT trigger.
FID_INTERPRET_BODY() m4_dnl By default, every code is interpreter code.
')
# 3) Final preparation
#
# Now we prepare all the code around the global diversions.
# It must be here, not in m4wrap, as we want M4 to mark the code
# by #line directives correctly, not to claim that every single line
# is at the beginning of the m4wrap directive.
#
# This part is split by the final file.
# H for inst-gen.h
# I for inst-interpret.c
# C for inst-gen.c
#
# So we in cycle:
# A. open a diversion
# B. send there some code
# C. close that diversion
# D. flush a global diversion
# E. open another diversion and goto B.
#
# Final diversions
# 200+ completed text before it is flushed to output
# This is a list of output diversions
m4_define(FID_WR_PUT_LIST) m4_define(FID_WR_PUT_LIST)
# This macro does the steps C to E, see before.
m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)') m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)')
# These macros do the splitting between H/I/C
m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])') m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])')
m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)') m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)')
m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)') m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)')
# Here is the direct code to be put into the output files
# together with the undiversions, being hidden under FID_WR_PUT()
m4_changequote([[,]]) m4_changequote([[,]])
FID_WR_DIRECT(I) FID_WR_DIRECT(I)
FID_WR_PUT(3) FID_WR_PUT(3)
@ -412,13 +506,24 @@ struct f_line_item {
/* Instruction constructors */ /* Instruction constructors */
FID_WR_PUT(3) FID_WR_PUT(3)
m4_divert(-1) m4_divert(-1)
# 4) Shipout
#
# Everything is prepared in FID_WR_PUT_LIST now. Let's go!
m4_changequote(`,') m4_changequote(`,')
# Flusher auxiliary macro
m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])') m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])')
# Defining the macro used in FID_WR_PUT_LIST
m4_define(FID_WR_DPUT, `m4_undivert($1)') m4_define(FID_WR_DPUT, `m4_undivert($1)')
# After the code is read and parsed, we:
m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)') m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)')
m4_changequote([[,]]) m4_changequote([[,]])
# And now M4 is going to parse f-inst.c, fill the diversions
# and after the file is done, the content of m4_m4wrap (see before)
# is executed.

View file

@ -167,7 +167,7 @@
} }
whati->f1 = NULL; whati->f1 = NULL;
} }
FID_ALL FID_INTERPRET_BODY
FID_INTERPRET_EXEC FID_INTERPRET_EXEC
if (fstk->vcnt < whati->count) /* TODO: make this check systematic */ if (fstk->vcnt < whati->count) /* TODO: make this check systematic */
@ -198,7 +198,7 @@
FID_INTERPRET_EXEC FID_INTERPRET_EXEC
fstk->vcnt -= whati->count; fstk->vcnt -= whati->count;
FID_ALL FID_INTERPRET_BODY
pm->len = whati->count; pm->len = whati->count;
RESULT(T_PATH_MASK, path_mask, pm); RESULT(T_PATH_MASK, path_mask, pm);
@ -337,7 +337,7 @@
FID_LINEARIZE_BODY FID_LINEARIZE_BODY
{ {
uint opos = pos; uint opos = pos;
FID_ALL FID_INTERPRET_BODY
ARG_ANY(1); ARG_ANY(1);
@ -345,7 +345,7 @@
if (opos < pos) if (opos < pos)
dest->items[pos].flags |= FIF_PRINTED; dest->items[pos].flags |= FIF_PRINTED;
} }
FID_ALL FID_INTERPRET_BODY
FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, %s, filter_return_str(item->fret)); FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, %s, filter_return_str(item->fret));
@ -1045,7 +1045,8 @@
INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */ INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
NEVER_CONSTANT; NEVER_CONSTANT;
ARG(1, T_BOOL); ARG(1, T_BOOL);
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], string \"%s\", item->s);
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], string %s, item->s);
ASSERT(s); ASSERT(s);