Added several tools for fib hashing function analysis. It turned out
we can use very simple function which is monotonic with respect to re-hashing: n ^= n >> 16; n ^= n << 10; h = (n >> (16 - o)) & ((1 << o) - 1); where o is table order. Statistical analysis for both backbone routing table and local OSPF routing tables gives values near theoretical optimum for uniform distribution (see ips.c for formulae). The trick is very simple: We always calculate a 16-bit hash value n and use o most significant bits (this gives us monotonity wrt. rehashing if we sort the chains by the value of n). The first shift/xor pair reduces the IP address to a 16-bit one, the second pair makes higher bits of the 16-bit value uniformly distributed even for tables containing lots of long prefixes (typical interior routing case with 24-bit or even longer prefixes).
This commit is contained in:
parent
02933ddbbe
commit
87b60bf7e8
4 changed files with 130 additions and 0 deletions
7
misc/Makefile
Normal file
7
misc/Makefile
Normal file
|
@ -0,0 +1,7 @@
|
|||
all: ips
|
||||
|
||||
ips: ips.c
|
||||
gcc ips.c -o ips -lm -O2 -Wall
|
||||
|
||||
clean:
|
||||
rm -f ips
|
20
misc/cisco2list
Executable file
20
misc/cisco2list
Executable file
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/perl
|
||||
#
|
||||
# Convert Cisco routing table listing to list of prefixes
|
||||
#
|
||||
|
||||
$loc = ($ARGV[0] eq "-l"); # Print only local prefixes
|
||||
|
||||
while (<STDIN>) {
|
||||
($loc ? /^[OR]\s/ : /^B\s/) || next;
|
||||
/^[ORB]( E[12])?\s+(\d+\.\d+\.\d+\.\d+)(\s|\/\d+\s)/ || die "Cannot parse $_";
|
||||
$net = $2;
|
||||
$len = $3;
|
||||
if ($len =~ /^\s*$/) {
|
||||
# Magic rule :)
|
||||
$len = ($net =~ /\.0$/) ? 24 : 32;
|
||||
}
|
||||
$len =~ s/^\///;
|
||||
$net =~ /(\d+)\.(\d+)\.(\d+)\.(\d+)/;
|
||||
printf "%02x%02x%02x%02x/%d\n", $1, $2, $3, $4, $len;
|
||||
}
|
94
misc/ips.c
Normal file
94
misc/ips.c
Normal file
|
@ -0,0 +1,94 @@
|
|||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <unistd.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
int h[65536];
|
||||
|
||||
/*
|
||||
* Probability analysis of hashing function:
|
||||
*
|
||||
* Let n be number of items and k number of boxes. For uniform distribution
|
||||
* we get:
|
||||
*
|
||||
* Expected value of "item i is in given box": Xi = 1/k
|
||||
* Expected number of items in given box: a = EX = E(sum Xi) = sum E(Xi) = n/k
|
||||
* Expected square value: E(X^2) = E((sum Xi)^2) = E((sum_i Xi^2) + (sum_i,j i<>j XiXj)) =
|
||||
* = sum_i E(Xi^2) + sum_i,j i<>j E(XiXj) =
|
||||
* = sum_i E(Xi) [Xi is binary] + sum_i,j i<>j E(XiXj) [those are independent] =
|
||||
* = n/k + n*(n-1)/k^2
|
||||
* Variance: var X = E(X^2) - (EX)^2 = n/k + n*(n-1)/k^2 - n^2/k^2 =
|
||||
* = n/k - n/k^2 = a * (1-1/k)
|
||||
* Probability of fixed box being zero: Pz = ((k-1)/k)^n = (1-1/k)^n = (1-1/k)^(ak) =
|
||||
* = ((1-1/k)^k)^a which we can approximate by e^-a.
|
||||
*/
|
||||
|
||||
unsigned int hf(unsigned int n)
|
||||
{
|
||||
#if 0
|
||||
n = (n ^ (n >> 16)) & 0xffff;
|
||||
n = (n ^ (n << 8)) & 0xffff;
|
||||
#elif 1
|
||||
n = (n >> 16) ^ n;
|
||||
n = (n ^ (n << 10)) & 0xffff;
|
||||
#elif 0
|
||||
n = (n >> 16) ^ n;
|
||||
n *= 259309;
|
||||
#elif 0
|
||||
n ^= (n >> 20);
|
||||
n ^= (n >> 10);
|
||||
n ^= (n >> 5);
|
||||
#elif 0
|
||||
n = (n * 259309) + ((n >> 16) * 123479);
|
||||
#else
|
||||
return random();
|
||||
#endif
|
||||
return n;
|
||||
}
|
||||
|
||||
int
|
||||
main(int argc, char **argv)
|
||||
{
|
||||
int cnt=0;
|
||||
int i;
|
||||
|
||||
int bits = atol(argv[1]);
|
||||
int z = 1 << bits;
|
||||
int max = atol(argv[2]);
|
||||
|
||||
while (max--)
|
||||
{
|
||||
unsigned int i, e;
|
||||
if (scanf("%x/%d", &i, &e) != 2)
|
||||
if (feof(stdin))
|
||||
break;
|
||||
else
|
||||
fprintf(stderr, "BUGGG\n");
|
||||
// i >>= (32-e);
|
||||
// i |= (i >> e);
|
||||
cnt++;
|
||||
h[(hf(i) >> 1*(16 - bits)) & (z-1)]++;
|
||||
}
|
||||
// printf(">>> %d addresses\n", cnt);
|
||||
#if 0
|
||||
for(i=0; i<z; i++)
|
||||
printf("%d\t%d\n", i, h[i]);
|
||||
#else
|
||||
{
|
||||
int min=cnt, max=0, zer=0;
|
||||
double delta=0;
|
||||
double avg = (double) cnt / z;
|
||||
double exdelta = avg*(1-1/z);
|
||||
double exzer = exp(-avg);
|
||||
for(i=0; i<z; i++) {
|
||||
if (h[i] < min) min=h[i];
|
||||
if (h[i] > max) max=h[i];
|
||||
delta += (h[i] - avg) * (h[i] - avg);
|
||||
if (!h[i]) zer++;
|
||||
}
|
||||
printf("size=%5d, min=%d, max=%2d, delta=%-7.6g (%-7.6g), avg=%-5.3g, zero=%g%% (%g%%)\n", z, min, max, delta/z, exdelta, avg, zer/(double)z*100, exzer*100);
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
9
misc/stats
Executable file
9
misc/stats
Executable file
|
@ -0,0 +1,9 @@
|
|||
#!/bin/sh
|
||||
|
||||
make ips
|
||||
echo "Global tables:"
|
||||
for a in 4 5 6 7 8 9 10 11 12 13 14 15 ; do
|
||||
./ips <global $a $((1<<($a+2)))
|
||||
done
|
||||
echo "Local tables:"
|
||||
./ips <local 6 1000
|
Loading…
Reference in a new issue