FIB documentation.

I've changed the init callback type to a typedef to work around a bug
in kernel-doc I'm too lazy to hunt now.
This commit is contained in:
Martin Mares 2000-06-01 16:16:18 +00:00
parent a783e259d8
commit ce4aca093a
2 changed files with 96 additions and 3 deletions

View file

@ -48,6 +48,8 @@ struct fib_iterator { /* See lib/slists.h for an explanation */
unsigned int hash;
};
typedef void (*fib_init_func)(struct fib_node *);
struct fib {
pool *fib_pool; /* Pool holding all our data */
slab *fib_slab; /* Slab holding all fib nodes */
@ -57,10 +59,10 @@ struct fib {
unsigned int hash_shift; /* 16 - hash_log */
unsigned int entries; /* Number of entries */
unsigned int entries_min, entries_max;/* Entry count limits (else start rehashing) */
void (*init)(struct fib_node *); /* Constructor */
fib_init_func init; /* Constructor */
};
void fib_init(struct fib *, pool *, unsigned node_size, unsigned hash_order, void (*init)(struct fib_node *));
void fib_init(struct fib *, pool *, unsigned node_size, unsigned hash_order, fib_init_func init);
void *fib_find(struct fib *, ip_addr *, int); /* Find or return NULL if doesn't exist */
void *fib_get(struct fib *, ip_addr *, int); /* Find or create new if nonexistent */
void *fib_route(struct fib *, ip_addr, int); /* Longest-match routing lookup */

View file

@ -6,6 +6,34 @@
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Forwarding Information Base
*
* FIB is a data structure designed for storage of routes indexed by their
* network prefixes. It supports insertion, deletion, searching by prefix,
* `routing' (in CIDR sense, that is searching for a longest prefix matching
* a given IP address) and (which makes the structure very tricky to implement)
* asynchronous reading, that is enumerating the contents of a FIB while other
* modules add, modify or remove entries.
*
* Internally, each FIB is represented as a collection of nodes of type &fib_node
* indexed using a sophisticated hashing mechanism.
* We use two-stage hashing where we calculate a 16-bit primary hash key independent
* on hash table size and then we just divide the primary keys modulo table size
* to get a real hash key used for determining the bucket containing the node.
* The lists of nodes in each buckets are sorted according to the primary hash
* key, hence if we keep the total number of buckets to be a power of two,
* re-hashing of the structure keeps the relative order of the nodes.
*
* To get the asynchronous reading consistent over node deletions, we need to
* keep a list of readers for each node. When a node gets deleted, its readers
* are automatically moved to the next node in the table.
*
* Basic FIB operations are performed by functions defined by this module,
* enumerating of FIB contents is accomplished by using the FIB_WALK() macro
* or FIB_ITERATE_START() if you want to do it asynchronously.
*/
#undef LOCAL_DEBUG
#include "nest/bird.h"
@ -55,8 +83,20 @@ fib_dummy_init(struct fib_node *dummy)
{
}
/**
* fib_init - initialize a new FIB
* @f: the FIB to be initialized (the structure itself being allocated by the caller)
* @p: pool to allocate the nodes in
* @node_size: node size to be used (each node consists of a standard header &fib_node
* followed by user data)
* @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order
* (recommended)
* @init: pointer a function to be called to initialize a newly created node
*
* This function initializes a newly allocated FIB and prepares it for use.
*/
void
fib_init(struct fib *f, pool *p, unsigned node_size, unsigned hash_order, void (*init)(struct fib_node *))
fib_init(struct fib *f, pool *p, unsigned node_size, unsigned hash_order, fib_init_func init)
{
if (!hash_order)
hash_order = HASH_DEF_ORDER;
@ -113,6 +153,15 @@ fib_rehash(struct fib *f, int step)
fib_ht_free(m);
}
/**
* fib_find - search for FIB node by prefix
* @f: FIB to search in
* @a: pointer to IP address of the prefix
* @len: prefix length
*
* Search for a FIB node corresponding to the given prefix, return
* a pointer to it or %NULL if no such node exists.
*/
void *
fib_find(struct fib *f, ip_addr *a, int len)
{
@ -123,6 +172,15 @@ fib_find(struct fib *f, ip_addr *a, int len)
return e;
}
/**
* fib_get - find or create a FIB node
* @f: FIB to work with
* @a: pointer to IP address of the prefix
* @len: prefix length
*
* Search for a FIB node corresponding to the given prefix and
* return a pointer to it. If no such node exists, create it.
*/
void *
fib_get(struct fib *f, ip_addr *a, int len)
{
@ -152,6 +210,16 @@ fib_get(struct fib *f, ip_addr *a, int len)
return e;
}
/**
* fib_route - CIDR routing lookup
* @f: FIB to search in
* @a: pointer to IP address of the prefix
* @len: prefix length
*
* Search for a FIB node with longest prefix matching the given
* network, that is a node which a CIDR router would use for routing
* that network.
*/
void *
fib_route(struct fib *f, ip_addr a, int len)
{
@ -203,6 +271,15 @@ fib_merge_readers(struct fib_iterator *i, struct fib_node *to)
}
}
/**
* fib_delete - delete a FIB node
* @f: FIB to delete from
* @E: entry to delete
*
* This function removes the given entry from the FIB,
* taking care of all the asynchronous readers by shifting
* them to the next node in the canonical reading order.
*/
void
fib_delete(struct fib *f, void *E)
{
@ -239,6 +316,13 @@ fib_delete(struct fib *f, void *E)
bug("fib_delete() called for invalid node");
}
/**
* fib_free - delete a FIB
* @f: FIB to be deleted
*
* This function deletes a FIB -- it frees all memory associated
* with it and all its entries.
*/
void
fib_free(struct fib *f)
{
@ -311,6 +395,13 @@ fit_put(struct fib_iterator *i, struct fib_node *n)
#ifdef DEBUGGING
/**
* fib_check - audit a FIB
* @f: FIB to be checked
*
* This debugging function audits a FIB by checking its internal consistency.
* Use when you suspect somebody from corrupting innocent data structures.
*/
void
fib_check(struct fib *f)
{