This is a major change of how the filters are interpreted. If everything
works how it should, it should not affect you unless you are hacking the
filters themselves.
Anyway, this change should make a huge improvement in the filter performance
as previous benchmarks showed that our major problem lies in the
recursion itself.
There are also some changes in nest and protocols, related mostly to
spreading const declarations throughout the whole BIRD and also to
refactored dynamic attribute definitions. The need of these came up
during the whole work and it is too difficult to split out these
not-so-related changes.
This is a fundamental change of an original (1999) concept of route
processing inside BIRD. During import/export, there was a temporary
ea_list created which was to be used instead of the another one inside
the route itself.
This led to some confusion, quirks, and strange filter code that handled
extended route attributes. Dropping it now.
The protocol interface has changed in an uniform way -- the
`struct ea_list *attrs` argument has been removed from store_tmp_attrs(),
import_control(), rt_notify() and get_route_info().
Also removed the lib-dir merging with sysdep. Updated #include's
accordingly.
Fixed make doc on recent Debian together with moving generated doc into
objdir.
Moved Makefile.in into root dir
Retired all.o and birdlib.a
Linking the final binaries directly from all the .o files.
The patch adds support for channels, structures connecting protocols and
tables and handling most interactions between them. The documentation is
missing yet.
In usual configuration, such export is already restricted
with the aid of the direct protocol but there are some
races that can circumvent it. This makes it harder to
break kernel device routes. Also adds an option to
disable this restriction.
used for automatic generation of instance names.
protocol->name is the official name
protocol->template is the name template (usually "name%d"),
should be all lowercase.
Updated all protocols to define the templates, checked that their configuration
grammar includes proto_name which generates the name and interns it in the
symbol table.
The changes are just too extensive for lazy me to list them
there, but see the comment at the top of sysdep/unix/krt.c.
The code got a bit more ifdeffy than I'd like, though.
Also fixed a bunch of FIXME's and added a couple of others. :)
o Now compatible with filtering.
o Learning of kernel routes supported only on CONFIG_SELF_CONSCIOUS
systems (on the others it's impossible to get it semantically correct).
o Learning now stores all of its routes in a separate fib and selects
the ones the kernel really uses for forwarding packets.
o Better treatment of CONFIG_AUTO_ROUTES ports.
o Lots of internal changes.
o Nothing is configured automatically. You _need_ to specify
the kernel syncer in config file in order to get it started.
o Syncing has been split to route syncer (protocol "Kernel") and
interface syncer (protocol "Device"), device routes are generated
by protocol "Direct" (now can exist in multiple instances, so that
it will be possible to feed different device routes to different
routing tables once multiple tables get supported).
See doc/bird.conf.example for a living example of these shiny features.
The new kernel syncer is cleanly split between generic UNIX module
and OS dependent submodules:
- krt.c (the generic part)
- krt-iface (low-level functions for interface handling)
- krt-scan (low-level functions for routing table scanning)
- krt-set (low-level functions for setting of kernel routes)
krt-set and krt-iface are common for all BSD-like Unices, krt-scan is heavily
system dependent (most Unices require /dev/kmem parsing, Linux uses /proc),
Netlink substitues all three modules.
We expect each UNIX port supports kernel routing table scanning, kernel
interface table scanning, kernel route manipulation and possibly also
asynchronous event notifications (new route, interface state change;
not implemented yet) and build the KRT protocol on the top of these
primitive operations.