Interfaces for OSPF and RIP could be configured to use (and request)
TTL 255 for traffic to direct neighbors.
Thanks to Simon Dickhoven for the original patch for RIPng.
Implements support for IPv6 traffic class, sets higher priority for OSPF
and RIP outgoing packets by default and allows to configure ToS/DS/TClass
IP header field and the local priority of outgoing packets.
Several new configure command variants:
configure undo - undo last reconfiguration
configure timeout - configure with scheduled undo if not confirmed in timeout
configure confirm - confirm last configuration
configure check - just parse and validate config file
When 'import keep rejected' protocol option is activated, routes
rejected by the import filter are kept in the routing table, but they
are hidden and not propagated to other protocols. It is possible to
examine them using 'show route rejected'.
Allows to send and receive multiple routes for one network by one BGP
session. Also contains necessary core changes to support this (routing
tables accepting several routes for one network from one protocol).
It needs some more cleanup before merging to the master branch.
- ROA tables, which are used as a basic part for RPKI.
- Commands for examining and modifying ROA tables.
- Filter operators based on ROA tables consistent with RFC 6483.
Which was, actually, a bug in timers - on older kernel, monotonic timer
is missing and the other implementation started with now == 0, which
collides with usage 0 as a special value in timer->expires field.
In usual configuration, such export is already restricted
with the aid of the direct protocol but there are some
races that can circumvent it. This makes it harder to
break kernel device routes. Also adds an option to
disable this restriction.
- Adds check to deny config file with no specified protocol to prevent
loading of empty config file.
- Moves CLI init before config parse to receive immediate error message
when cannot open control socket.
- Fixes socket name path check and other error handling in CLI init.
When device protocol goes down, interfaces should be flushed
asynchronously (in the same way like routes from protocols are flushed),
when protocol goes to DOWN/HUNGRY.
This fixes the problem with static routes staying in kernel routing
table after BIRD shutdown.
- BSD kernel syncer is now self-conscious and can learn alien routes
- important bugfix in BSD kernel syncer (crash after protocol restart)
- many minor changes and bugfixes in kernel syncers and neighbor cache
- direct protocol does not generate host and link local routes
- min_scope check is removed, all routes have SCOPE_UNIVERSE by default
- also fixes some remaining compiler warnings
It seems that by adding one pipe-specific exception to route
announcement code and by adding one argument to rt_notify() callback i
could completely eliminate the need for the phantom protocol instance
and therefore make the code more straightforward. It will also fix some
minor bugs (like ignoring debug flag changes from the command line).
There is no reak callback scheduler and previous behavior causes
bad things during hard congestion (like BGP hold timeouts).
Smart callback scheduler is still missing, but main loop was
changed such that it first processes all tx callbacks (which
are fast enough) (but max 4* per socket) + rx callbacks for CLI,
and in the second phase it processes one rx callback per
socket up to four sockets (as rx callback can be slow when
there are too many protocols, because route redistribution
is done synchronously inside rx callback). If there is event
callback ready, second phase is skipped in 90% of iterations
(to speed up CLI during congestion).
This also fixes bug that timer->recurrent was not cleared
in tm_new() and unexpected recurrence of startup timer
in BGP confused state machine and caused crash.
If other side of a socket is sending data faster than
BIRD is processing, BIRD does not schedule any other
callbacks (events, timers, rx/tx callbacks).
KRF_INSTALLED flag was not cleared during reconfiguration
that lead to not removing routes during reconfigure when
export rules changed.
We also should not try to remove routes we didi not installed,
on Linux this leads to warnings (as kernel checks route source
field and do not allow to remove non-bird routes) but we should
not rely on it.
Here is a patch fixing a bug that causes breakage of a local routing
table during shutdown of Bird. The problem was caused by shutdown
of 'device' protocol before shutdown of 'kernel' protocol. When
'device' protocol went down, the route (with local network prefix)
From different protocol (BGP or OSPF) became preferred and installed
to the kernel routing table. Such routes were broken (like
192.168.1.0/24 via 192.168.1.2). I think it is also the cause
of problem reported by Martin Kraus.
The patch disables updating of kernel routing table during shutdown of
Bird. I am not sure whether this is the best way to fix it, I would
prefer to forbid 'kernel' protocol to overwrite routes with
'proto kernel'.
The patch also fixes a problem that during shutdown sometimes routes
created by Bird remained in the kernel routing table.
Also, removed the `if (s)' test, because I believe that as the whole
socket interface doesn't accent NULL pointers, sk_reallocate() shouldn't
be the only exception.
you can delete the socket from anywhere in the hooks and nothing should break.
Also, the receive/transmit buffers are now regular xmalloc()'ed buffers,
not separate resources which would need shuffling around between pools.
sk_close() is gone, use rfree() instead.
for even only medium sized route table output. Fix a strange garbled
output problem in the client. The latter seems to be caused by some
library doing tcflush while there is still command output pending. So
the best fix here is to do fflush and then tcdrain. Note that this
problem occurs only under certain load situations and is not too easy to
reproduce.
(by Andreas)
Please try compiling your code with --enable-warnings to see them. (The
unused parameter warnings are usually bogus, the unused variable ones
are very useful, but gcc is unable to control them separately.)
of calling the protocols manually.
Implemented printing of dynamic attributes in `show route all'.
Each protocol can now register its own attribute class (protocol->attr_class,
set to EAP_xxx) and also a callback for naming and formatting of attributes.
The callback can return one of the following results:
GA_UNKNOWN Attribute not recognized.
GA_NAME Attribute name recognized and put to the buffer,
generic code should format the value.
GA_FULL Both attribute name and value put to the buffer.
Please update protocols generating dynamic attributes to provide
the attr_class and formatting hook.
address, not per interface (hence it's ifa->flags & IA_UNNUMBERED) and
should be set reliably. IF_MULTIACCESS should be fixed now, but it isn't
wise to rely on it on interfaces configured with /30 prefix.
(the current version UNIX-specific) anyway, so it's useless to try splitting it
to sysdep and generic part. Instead of this, configure script decides (based on
system type and user's wish) what (if any) client should be built and what
autoconfiguration it requires. Also, the client provides its own die/bug/...
functions.
used for automatic generation of instance names.
protocol->name is the official name
protocol->template is the name template (usually "name%d"),
should be all lowercase.
Updated all protocols to define the templates, checked that their configuration
grammar includes proto_name which generates the name and interns it in the
symbol table.
multicast abilities depending on definedness of symbols and use hard-wired
system-dependent configuration defines instead.
Please test whereever you can.
with protocols wanting to use the same port on the same interface
during reconfiguration time.
How to use locks: In the if_notify hook, just order locks for the
interfaces you want to work with and do the real socket opening after the
lock hook function gets called. When you stop using the socket, close
it and rfree() the lock.
Please update your protocols to use the new locking mechanism.