/* * Filters: Trie for prefix sets * * Copyright 2009 Ondrej Zajicek * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Trie for prefix sets * * We use a (compressed) trie to represent prefix sets. Every node * in the trie represents one prefix (&addr/&plen) and &plen also * indicates the index of the bit in the address that is used to * branch at the node. If we need to represent just a set of * prefixes, it would be simple, but we have to represent a * set of prefix patterns. Each prefix pattern consists of * &ppaddr/&pplen and two integers: &low and &high, and a prefix * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen) * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high. * * We use a bitmask (&accept) to represent accepted prefix lengths * at a node. As there are 33 prefix lengths (0..32 for IPv4), but * there is just one prefix of zero length in the whole trie so we * have &zero flag in &f_trie (indicating whether the trie accepts * prefix 0.0.0.0/0) as a special case, and &accept bitmask * represents accepted prefix lengths from 1 to 32. * * There are two cases in prefix matching - a match when the length * of the prefix is smaller that the length of the prefix pattern, * (&plen < &pplen) and otherwise. The second case is simple - we * just walk through the trie and look at every visited node * whether that prefix accepts our prefix length (&plen). The * first case is tricky - we don't want to examine every descendant * of a final node, so (when we create the trie) we have to propagate * that information from nodes to their ascendants. * * Suppose that we have two masks (M1 and M2) for a node. Mask M1 * represents accepted prefix lengths by just the node and mask M2 * represents accepted prefix lengths by the node or any of its * descendants. Therefore M2 is a bitwise or of M1 and children's * M2 and this is a maintained invariant during trie building. * Basically, when we want to match a prefix, we walk through the trie, * check mask M1 for our prefix length and when we came to * final node, we check mask M2. * * There are two differences in the real implementation. First, * we use a compressed trie so there is a case that we skip our * final node (if it is not in the trie) and we came to node that * is either extension of our prefix, or completely out of path * In the first case, we also have to check M2. * * Second, we really need not to maintain two separate bitmasks. * Checks for mask M1 are always larger than &applen and we need * just the first &pplen bits of mask M2 (if trie compression * hadn't been used it would suffice to know just $applen-th bit), * so we have to store them together in &accept mask - the first * &pplen bits of mask M2 and then mask M1. * * There are four cases when we walk through a trie: * * - we are in NULL * - we are out of path (prefixes are inconsistent) * - we are in the wanted (final) node (node length == &plen) * - we are beyond the end of path (node length > &plen) * - we are still on path and keep walking (node length < &plen) * * The walking code in trie_match_prefix() is structured according to * these cases. */ #include "nest/bird.h" #include "lib/string.h" #include "conf/conf.h" #include "filter/filter.h" #include "filter/data.h" /* * In the trie_add_prefix(), we use ip_addr (assuming that it is the same as * ip6_addr) to handle both IPv4 and IPv6 prefixes. In contrast to rest of the * BIRD, IPv4 addresses are just zero-padded from right. That is why we have * ipt_from_ip4() and ipt_to_ip4() macros below. */ #define ipa_mkmask(x) ip6_mkmask(x) #define ipa_masklen(x) ip6_masklen(&x) #define ipa_pxlen(x,y) ip6_pxlen(x,y) #define ipa_getbit(a,p) ip6_getbit(a,p) #define ipa_getbits(a,p,n) ip6_getbits(a,p,n) #define ipa_setbits(a,p,n) ip6_setbits(a,p,n) #define trie_local_mask(a,b,c) trie_local_mask6(a,b,c) #define ipt_from_ip4(x) _MI6(_I(x), 0, 0, 0) #define ipt_to_ip4(x) _MI4(_I0(x)) /** * f_new_trie - allocates and returns a new empty trie * @lp: linear pool to allocate items from * @data_size: user data attached to node */ struct f_trie * f_new_trie(linpool *lp, uint data_size) { struct f_trie * ret; ret = lp_allocz(lp, sizeof(struct f_trie) + data_size); ret->lp = lp; ret->ipv4 = -1; ret->data_size = data_size; return ret; } static inline struct f_trie_node4 * new_node4(struct f_trie *t, uint plen, uint local, ip4_addr paddr, ip4_addr pmask, ip4_addr amask) { struct f_trie_node4 *n = lp_allocz(t->lp, sizeof(struct f_trie_node4) + t->data_size); n->plen = plen; n->local = local; n->addr = paddr; n->mask = pmask; n->accept = amask; return n; } static inline struct f_trie_node6 * new_node6(struct f_trie *t, uint plen, uint local, ip6_addr paddr, ip6_addr pmask, ip6_addr amask) { struct f_trie_node6 *n = lp_allocz(t->lp, sizeof(struct f_trie_node6) + t->data_size); n->plen = plen; n->local = local; n->addr = paddr; n->mask = pmask; n->accept = amask; return n; } static inline struct f_trie_node * new_node(struct f_trie *t, uint plen, uint local, ip_addr paddr, ip_addr pmask, ip_addr amask) { if (t->ipv4) return (struct f_trie_node *) new_node4(t, plen, local, ipt_to_ip4(paddr), ipt_to_ip4(pmask), ipt_to_ip4(amask)); else return (struct f_trie_node *) new_node6(t, plen, local, ipa_to_ip6(paddr), ipa_to_ip6(pmask), ipa_to_ip6(amask)); } static inline void attach_node4(struct f_trie_node4 *parent, struct f_trie_node4 *child) { parent->c[ip4_getbits(child->addr, parent->plen, TRIE_STEP)] = child; } static inline void attach_node6(struct f_trie_node6 *parent, struct f_trie_node6 *child) { parent->c[ip6_getbits(child->addr, parent->plen, TRIE_STEP)] = child; } static inline void attach_node(struct f_trie_node *parent, struct f_trie_node *child, int v4) { if (v4) attach_node4(&parent->v4, &child->v4); else attach_node6(&parent->v6, &child->v6); } static inline uint trie_local_mask4(ip4_addr px, uint plen, uint nlen) { uint step = plen - nlen; uint pos = (1u << step) + ip4_getbits(px, nlen, step); return 1u << pos; } static inline uint trie_local_mask6(ip6_addr px, uint plen, uint nlen) { uint step = plen - nlen; uint pos = (1u << step) + ip6_getbits(px, nlen, step); return 1u << pos; } static inline uint trie_amask_to_local(ip_addr px, ip_addr amask, uint nlen) { uint local = 0; for (uint plen = MAX(nlen, 1); plen < (nlen + TRIE_STEP); plen++) if (ipa_getbit(amask, plen - 1)) local |= trie_local_mask(px, plen, nlen); return local; } #define GET_ADDR(N,F,X) ((X) ? ipt_from_ip4((N)->v4.F) : ipa_from_ip6((N)->v6.F)) #define SET_ADDR(N,F,X,V) ({ if (X) (N)->v4.F =ipt_to_ip4(V); else (N)->v6.F =ipa_to_ip6(V); }) #define ADD_LOCAL(N,X,V) ({ uint v_ = (V); if (X) (N)->v4.local |= v_; else (N)->v6.local |= v_; }) #define GET_CHILD(N,F,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I]) static void * trie_add_node(struct f_trie *t, uint plen, ip_addr px, uint local, uint l, uint h) { uint l_ = l ? (l - 1) : 0; ip_addr amask = (l_ < h) ? ipa_xor(ipa_mkmask(l_), ipa_mkmask(h)) : IPA_NONE; ip_addr pmask = ipa_mkmask(plen); ip_addr paddr = ipa_and(px, pmask); struct f_trie_node *o = NULL; struct f_trie_node *n = &t->root; int v4 = t->ipv4; /* Add all bits for each active level (0x0002 0x000c 0x00f0 0xff00) */ for (uint i = 0; i < TRIE_STEP; i++) if ((l <= (plen + i)) && ((plen + i) <= h)) local |= ((1u << (1u << i)) - 1) << (1u << i); DBG("Insert node %I/%u (%I %x)\n", paddr, plen, amask, local); while (n) { ip_addr naddr = GET_ADDR(n, addr, v4); ip_addr nmask = GET_ADDR(n, mask, v4); ip_addr accept = GET_ADDR(n, accept, v4); ip_addr cmask = ipa_and(nmask, pmask); uint nlen = v4 ? n->v4.plen : n->v6.plen; DBG("Found node %I/%u (%I %x)\n", naddr, nlen, accept, v4 ? n->v4.local : n->v6.local); if (ipa_compare(ipa_and(paddr, cmask), ipa_and(naddr, cmask))) { /* We are out of path - we have to add branching node 'b' between node 'o' and node 'n', and attach new node 'a' as the other child of 'b'. */ int blen = ROUND_DOWN_POW2(ipa_pxlen(paddr, naddr), TRIE_STEP); ip_addr bmask = ipa_mkmask(blen); ip_addr baddr = ipa_and(px, bmask); /* Merge accept masks from children to get accept mask for node 'b' */ ip_addr baccm = ipa_and(ipa_or(amask, accept), bmask); uint bloc = trie_amask_to_local(naddr, accept, blen) | trie_amask_to_local(paddr, amask, blen); struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); struct f_trie_node *b = new_node(t, blen, bloc, baddr, bmask, baccm); attach_node(o, b, v4); attach_node(b, n, v4); attach_node(b, a, v4); DBG("Case 1\n"); return a; } if (plen < nlen) { /* We add new node 'a' between node 'o' and node 'n' */ amask = ipa_or(amask, ipa_and(accept, pmask)); local |= trie_amask_to_local(naddr, accept, plen); struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); attach_node(o, a, v4); attach_node(a, n, v4); DBG("Case 2\n"); return a; } if (plen == nlen) { /* We already found added node in trie. Just update accept and local mask */ accept = ipa_or(accept, amask); SET_ADDR(n, accept, v4, accept); ADD_LOCAL(n, v4, local); DBG("Case 3\n"); return n; } /* Update accept mask part M2 and go deeper */ accept = ipa_or(accept, ipa_and(amask, nmask)); SET_ADDR(n, accept, v4, accept); ADD_LOCAL(n, v4, trie_amask_to_local(paddr, amask, nlen)); DBG("Step %u\n", ipa_getbits(paddr, nlen)); /* n->plen < plen and plen <= 32 (128) */ o = n; n = GET_CHILD(n, c, v4, ipa_getbits(paddr, nlen, TRIE_STEP)); } /* We add new tail node 'a' after node 'o' */ struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); attach_node(o, a, v4); DBG("Case 4\n"); return a; } /** * trie_add_prefix * @t: trie to add to * @net: IP network prefix * @l: prefix lower bound * @h: prefix upper bound * * Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower * and upper bounds on accepted prefix lengths, both inclusive. * 0 <= l, h <= 32 (128 for IPv6). * * Returns a pointer to the allocated node. The function can return a pointer to * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0), * a pointer to the root node is returned. Returns NULL when called with * mismatched IPv4/IPv6 net type. */ void * trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h) { uint plen = net_pxlen(net); ip_addr px; int v4; switch (net->type) { case NET_IP4: px = ipt_from_ip4(net4_prefix(net)); v4 = 1; break; case NET_IP6: px = ipa_from_ip6(net6_prefix(net)); v4 = 0; break; default: bug("invalid type"); } if (t->ipv4 != v4) { if (t->ipv4 < 0) t->ipv4 = v4; else return NULL; } DBG("\nInsert net %N (%u-%u)\n", net, l, h); if (l == 0) t->zero = 1; if (h < plen) plen = h; /* Primary node length, plen rounded down */ uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); if (plen == nlen) return trie_add_node(t, nlen, px, 0, l, h); /* Secondary node length, plen rouned up */ uint slen = nlen + TRIE_STEP; void *node = NULL; /* * For unaligned prefix lengths it is more complicated. We need to encode * matching prefixes of lengths from l to h. There are three cases of lengths: * * 1) 0..nlen are encoded by the accept mask of the primary node * 2) nlen..(slen-1) are encoded by the local mask of the primary node * 3) slen..max are encoded in secondary nodes */ if (l < slen) { uint local = 0; /* Compute local bits for accepted nlen..(slen-1) prefixes */ for (uint i = 0; i < TRIE_STEP; i++) if ((l <= (nlen + i)) && ((nlen + i) <= h)) { uint pos = (1u << i) + ipa_getbits(px, nlen, i); uint len = ((nlen + i) <= plen) ? 1 : (1u << (nlen + i - plen)); /* We need to fill 'len' bits starting at 'pos' position */ local |= ((1u << len) - 1) << pos; } /* Add the primary node */ node = trie_add_node(t, nlen, px, local, l, nlen); } if (slen <= h) { uint l2 = MAX(l, slen); uint max = (1u << (slen - plen)); /* Add secondary nodes */ for (uint i = 0; i < max; i++) node = trie_add_node(t, slen, ipa_setbits(px, slen - 1, i), 0, l2, h); } return node; } static int trie_match_net4(const struct f_trie *t, ip4_addr px, uint plen) { ip4_addr pmask = ip4_mkmask(plen); ip4_addr paddr = ip4_and(px, pmask); if (plen == 0) return t->zero; int plentest = plen - 1; uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); uint local = trie_local_mask4(px, plen, nlen); const struct f_trie_node4 *n = &t->root.v4; while (n) { ip4_addr cmask = ip4_and(n->mask, pmask); /* We are out of path */ if (ip4_compare(ip4_and(paddr, cmask), ip4_and(n->addr, cmask))) return 0; /* Check local mask */ if ((n->plen == nlen) && (n->local & local)) return 1; /* Check accept mask */ if (ip4_getbit(n->accept, plentest)) return 1; /* We finished trie walk and still no match */ if (plen <= n->plen) return 0; /* Choose children */ n = n->c[ip4_getbits(paddr, n->plen, TRIE_STEP)]; } return 0; } static int trie_match_net6(const struct f_trie *t, ip6_addr px, uint plen) { ip6_addr pmask = ip6_mkmask(plen); ip6_addr paddr = ip6_and(px, pmask); if (plen == 0) return t->zero; int plentest = plen - 1; uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); uint local = trie_local_mask6(px, plen, nlen); const struct f_trie_node6 *n = &t->root.v6; while (n) { ip6_addr cmask = ip6_and(n->mask, pmask); /* We are out of path */ if (ip6_compare(ip6_and(paddr, cmask), ip6_and(n->addr, cmask))) return 0; /* Check local mask */ if ((n->plen == nlen) && (n->local & local)) return 1; /* Check accept mask */ if (ip6_getbit(n->accept, plentest)) return 1; /* We finished trie walk and still no match */ if (plen <= n->plen) return 0; /* Choose children */ n = n->c[ip6_getbits(paddr, n->plen, TRIE_STEP)]; } return 0; } /** * trie_match_net * @t: trie * @n: net address * * Tries to find a matching net in the trie such that * prefix @n matches that prefix pattern. Returns 1 if there * is such prefix pattern in the trie. */ int trie_match_net(const struct f_trie *t, const net_addr *n) { switch (n->type) { case NET_IP4: case NET_VPN4: case NET_ROA4: return t->ipv4 ? trie_match_net4(t, net4_prefix(n), net_pxlen(n)) : 0; case NET_IP6: case NET_VPN6: case NET_ROA6: return !t->ipv4 ? trie_match_net6(t, net6_prefix(n), net_pxlen(n)) : 0; default: return 0; } } static int trie_node_same4(const struct f_trie_node4 *t1, const struct f_trie_node4 *t2) { if ((t1 == NULL) && (t2 == NULL)) return 1; if ((t1 == NULL) || (t2 == NULL)) return 0; if ((t1->plen != t2->plen) || (! ip4_equal(t1->addr, t2->addr)) || (! ip4_equal(t1->accept, t2->accept))) return 0; for (uint i = 0; i < (1 << TRIE_STEP); i++) if (! trie_node_same4(t1->c[i], t2->c[i])) return 0; return 1; } static int trie_node_same6(const struct f_trie_node6 *t1, const struct f_trie_node6 *t2) { if ((t1 == NULL) && (t2 == NULL)) return 1; if ((t1 == NULL) || (t2 == NULL)) return 0; if ((t1->plen != t2->plen) || (! ip6_equal(t1->addr, t2->addr)) || (! ip6_equal(t1->accept, t2->accept))) return 0; for (uint i = 0; i < (1 << TRIE_STEP); i++) if (! trie_node_same6(t1->c[i], t2->c[i])) return 0; return 1; } /** * trie_same * @t1: first trie to be compared * @t2: second one * * Compares two tries and returns 1 if they are same */ int trie_same(const struct f_trie *t1, const struct f_trie *t2) { if ((t1->zero != t2->zero) || (t1->ipv4 != t2->ipv4)) return 0; if (t1->ipv4) return trie_node_same4(&t1->root.v4, &t2->root.v4); else return trie_node_same6(&t1->root.v6, &t2->root.v6); } static void trie_node_format4(const struct f_trie_node4 *t, buffer *buf) { if (t == NULL) return; if (ip4_nonzero(t->accept)) buffer_print(buf, "%I4/%d{%I4}, ", t->addr, t->plen, t->accept); for (uint i = 0; i < (1 << TRIE_STEP); i++) trie_node_format4(t->c[i], buf); } static void trie_node_format6(const struct f_trie_node6 *t, buffer *buf) { if (t == NULL) return; if (ip6_nonzero(t->accept)) buffer_print(buf, "%I6/%d{%I6}, ", t->addr, t->plen, t->accept); for (uint i = 0; i < (1 << TRIE_STEP); i++) trie_node_format6(t->c[i], buf); } /** * trie_format * @t: trie to be formatted * @buf: destination buffer * * Prints the trie to the supplied buffer. */ void trie_format(const struct f_trie *t, buffer *buf) { buffer_puts(buf, "["); if (t->zero) buffer_print(buf, "%I/%d, ", t->ipv4 ? IPA_NONE4 : IPA_NONE6, 0); if (t->ipv4) trie_node_format4(&t->root.v4, buf); else trie_node_format6(&t->root.v6, buf); if (buf->pos == buf->end) return; /* Undo last separator */ if (buf->pos[-1] != '[') buf->pos -= 2; buffer_puts(buf, "]"); }