071354da5b
Add a current_time_now() function which gets an immediate monotonic timestamp instead of using the cached value from the event loop. This is useful for callers that need precise times, such as the Babel RTT measurement code. Signed-off-by: Toke Høiland-Jørgensen <toke@toke.dk>
391 lines
8 KiB
C
391 lines
8 KiB
C
/*
|
|
* BIRD -- Timers
|
|
*
|
|
* (c) 2013--2017 Ondrej Zajicek <santiago@crfreenet.org>
|
|
* (c) 2013--2017 CZ.NIC z.s.p.o.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Timers
|
|
*
|
|
* Timers are resources which represent a wish of a module to call a function at
|
|
* the specified time. The timer code does not guarantee exact timing, only that
|
|
* a timer function will not be called before the requested time.
|
|
*
|
|
* In BIRD, time is represented by values of the &btime type which is signed
|
|
* 64-bit integer interpreted as a relative number of microseconds since some
|
|
* fixed time point in past. The current time can be obtained by current_time()
|
|
* function with reasonable accuracy and is monotonic. There is also a current
|
|
* 'wall-clock' real time obtainable by current_real_time() reported by OS.
|
|
*
|
|
* Each timer is described by a &timer structure containing a pointer to the
|
|
* handler function (@hook), data private to this function (@data), time the
|
|
* function should be called at (@expires, 0 for inactive timers), for the other
|
|
* fields see |timer.h|.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "nest/bird.h"
|
|
|
|
#include "lib/heap.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/timer.h"
|
|
|
|
|
|
struct timeloop main_timeloop;
|
|
|
|
|
|
#ifdef USE_PTHREADS
|
|
|
|
#include <pthread.h>
|
|
|
|
/* Data accessed and modified from proto/bfd/io.c */
|
|
pthread_key_t current_time_key;
|
|
|
|
static inline struct timeloop *
|
|
timeloop_current(void)
|
|
{
|
|
return pthread_getspecific(current_time_key);
|
|
}
|
|
|
|
static inline void
|
|
timeloop_init_current(void)
|
|
{
|
|
pthread_key_create(¤t_time_key, NULL);
|
|
pthread_setspecific(current_time_key, &main_timeloop);
|
|
}
|
|
|
|
void wakeup_kick_current(void);
|
|
|
|
#else
|
|
|
|
/* Just use main timelooop */
|
|
static inline struct timeloop * timeloop_current(void) { return &main_timeloop; }
|
|
static inline void timeloop_init_current(void) { }
|
|
|
|
#endif
|
|
|
|
btime
|
|
current_time(void)
|
|
{
|
|
return timeloop_current()->last_time;
|
|
}
|
|
|
|
btime
|
|
current_time_now(void)
|
|
{
|
|
struct timespec ts;
|
|
int rv;
|
|
|
|
rv = clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
if (rv < 0)
|
|
die("clock_gettime: %m");
|
|
|
|
return ts.tv_sec S + ts.tv_nsec NS;
|
|
}
|
|
|
|
btime
|
|
current_real_time(void)
|
|
{
|
|
struct timeloop *loop = timeloop_current();
|
|
|
|
if (!loop->real_time)
|
|
times_update_real_time(loop);
|
|
|
|
return loop->real_time;
|
|
}
|
|
|
|
|
|
#define TIMER_LESS(a,b) ((a)->expires < (b)->expires)
|
|
#define TIMER_SWAP(heap,a,b,t) (t = heap[a], heap[a] = heap[b], heap[b] = t, \
|
|
heap[a]->index = (a), heap[b]->index = (b))
|
|
|
|
|
|
static void
|
|
tm_free(resource *r)
|
|
{
|
|
timer *t = (void *) r;
|
|
|
|
tm_stop(t);
|
|
}
|
|
|
|
static void
|
|
tm_dump(resource *r)
|
|
{
|
|
timer *t = (void *) r;
|
|
|
|
debug("(code %p, data %p, ", t->hook, t->data);
|
|
if (t->randomize)
|
|
debug("rand %d, ", t->randomize);
|
|
if (t->recurrent)
|
|
debug("recur %d, ", t->recurrent);
|
|
if (t->expires)
|
|
debug("expires in %d ms)\n", (t->expires - current_time()) TO_MS);
|
|
else
|
|
debug("inactive)\n");
|
|
}
|
|
|
|
|
|
static struct resclass tm_class = {
|
|
"Timer",
|
|
sizeof(timer),
|
|
tm_free,
|
|
tm_dump,
|
|
NULL,
|
|
NULL
|
|
};
|
|
|
|
timer *
|
|
tm_new(pool *p)
|
|
{
|
|
timer *t = ralloc(p, &tm_class);
|
|
t->index = -1;
|
|
return t;
|
|
}
|
|
|
|
void
|
|
tm_set(timer *t, btime when)
|
|
{
|
|
struct timeloop *loop = timeloop_current();
|
|
uint tc = timers_count(loop);
|
|
|
|
if (!t->expires)
|
|
{
|
|
t->index = ++tc;
|
|
t->expires = when;
|
|
BUFFER_PUSH(loop->timers) = t;
|
|
HEAP_INSERT(loop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP);
|
|
}
|
|
else if (t->expires < when)
|
|
{
|
|
t->expires = when;
|
|
HEAP_INCREASE(loop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
|
|
}
|
|
else if (t->expires > when)
|
|
{
|
|
t->expires = when;
|
|
HEAP_DECREASE(loop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
|
|
}
|
|
|
|
#ifdef CONFIG_BFD
|
|
/* Hack to notify BFD loops */
|
|
if ((loop != &main_timeloop) && (t->index == 1))
|
|
wakeup_kick_current();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
tm_start(timer *t, btime after)
|
|
{
|
|
tm_set(t, current_time() + MAX(after, 0));
|
|
}
|
|
|
|
void
|
|
tm_stop(timer *t)
|
|
{
|
|
if (!t->expires)
|
|
return;
|
|
|
|
struct timeloop *loop = timeloop_current();
|
|
uint tc = timers_count(loop);
|
|
|
|
HEAP_DELETE(loop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
|
|
BUFFER_POP(loop->timers);
|
|
|
|
t->index = -1;
|
|
t->expires = 0;
|
|
}
|
|
|
|
void
|
|
timers_init(struct timeloop *loop, pool *p)
|
|
{
|
|
times_init(loop);
|
|
|
|
BUFFER_INIT(loop->timers, p, 4);
|
|
BUFFER_PUSH(loop->timers) = NULL;
|
|
}
|
|
|
|
void io_log_event(void *hook, void *data);
|
|
|
|
void
|
|
timers_fire(struct timeloop *loop)
|
|
{
|
|
btime base_time;
|
|
timer *t;
|
|
|
|
times_update(loop);
|
|
base_time = loop->last_time;
|
|
|
|
while (t = timers_first(loop))
|
|
{
|
|
if (t->expires > base_time)
|
|
return;
|
|
|
|
if (t->recurrent)
|
|
{
|
|
btime when = t->expires + t->recurrent;
|
|
|
|
if (when <= loop->last_time)
|
|
when = loop->last_time + t->recurrent;
|
|
|
|
if (t->randomize)
|
|
when += random() % (t->randomize + 1);
|
|
|
|
tm_set(t, when);
|
|
}
|
|
else
|
|
tm_stop(t);
|
|
|
|
/* This is ugly hack, we want to log just timers executed from the main I/O loop */
|
|
if (loop == &main_timeloop)
|
|
io_log_event(t->hook, t->data);
|
|
|
|
t->hook(t);
|
|
tmp_flush();
|
|
}
|
|
}
|
|
|
|
void
|
|
timer_init(void)
|
|
{
|
|
timers_init(&main_timeloop, &root_pool);
|
|
timeloop_init_current();
|
|
}
|
|
|
|
|
|
/**
|
|
* tm_parse_time - parse a date and time
|
|
* @x: time string
|
|
*
|
|
* tm_parse_time() takes a textual representation of a date and time
|
|
* (yyyy-mm-dd[ hh:mm:ss[.sss]]) and converts it to the corresponding value of
|
|
* type &btime.
|
|
*/
|
|
btime
|
|
tm_parse_time(const char *x)
|
|
{
|
|
struct tm tm = {};
|
|
int usec, n1, n2, n3, r;
|
|
|
|
r = sscanf(x, "%d-%d-%d%n %d:%d:%d%n.%d%n",
|
|
&tm.tm_year, &tm.tm_mon, &tm.tm_mday, &n1,
|
|
&tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n2,
|
|
&usec, &n3);
|
|
|
|
if ((r == 3) && !x[n1])
|
|
tm.tm_hour = tm.tm_min = tm.tm_sec = usec = 0;
|
|
else if ((r == 6) && !x[n2])
|
|
usec = 0;
|
|
else if ((r == 7) && !x[n3])
|
|
{
|
|
/* Convert subsecond digits to proper precision */
|
|
int digits = n3 - n2 - 1;
|
|
if ((usec < 0) || (usec > 999999) || (digits < 1) || (digits > 6))
|
|
return 0;
|
|
|
|
while (digits++ < 6)
|
|
usec *= 10;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
tm.tm_mon--;
|
|
tm.tm_year -= 1900;
|
|
s64 ts = mktime(&tm);
|
|
if ((ts == (s64) (time_t) -1) || (ts < 0) || (ts > ((s64) 1 << 40)))
|
|
return 0;
|
|
|
|
return ts S + usec;
|
|
}
|
|
|
|
/**
|
|
* tm_format_time - convert date and time to textual representation
|
|
* @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
|
|
* @fmt: specification of resulting textual representation of the time
|
|
* @t: time
|
|
*
|
|
* This function formats the given relative time value @t to a textual
|
|
* date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
|
|
*/
|
|
void
|
|
tm_format_time(char *x, struct timeformat *fmt, btime t)
|
|
{
|
|
btime dt = current_time() - t;
|
|
btime rt = current_real_time() - dt;
|
|
int v1 = !fmt->limit || (dt < fmt->limit);
|
|
|
|
if (!tm_format_real_time(x, TM_DATETIME_BUFFER_SIZE, v1 ? fmt->fmt1 : fmt->fmt2, rt))
|
|
strcpy(x, "<error>");
|
|
}
|
|
|
|
/* Replace %f in format string with usec scaled to requested precision */
|
|
static int
|
|
strfusec(char *buf, int size, const char *fmt, uint usec)
|
|
{
|
|
char *str = buf;
|
|
int parity = 0;
|
|
|
|
while (*fmt)
|
|
{
|
|
if (!size)
|
|
return 0;
|
|
|
|
if ((fmt[0] == '%') && (!parity) &&
|
|
((fmt[1] == 'f') || (fmt[1] >= '1') && (fmt[1] <= '6') && (fmt[2] == 'f')))
|
|
{
|
|
int digits = (fmt[1] == 'f') ? 6 : (fmt[1] - '0');
|
|
uint d = digits, u = usec;
|
|
|
|
/* Convert microseconds to requested precision */
|
|
while (d++ < 6)
|
|
u /= 10;
|
|
|
|
int num = bsnprintf(str, size, "%0*u", digits, u);
|
|
if (num < 0)
|
|
return 0;
|
|
|
|
fmt += (fmt[1] == 'f') ? 2 : 3;
|
|
ADVANCE(str, size, num);
|
|
}
|
|
else
|
|
{
|
|
/* Handle '%%' expression */
|
|
parity = (*fmt == '%') ? !parity : 0;
|
|
*str++ = *fmt++;
|
|
size--;
|
|
}
|
|
}
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
*str = 0;
|
|
return str - buf;
|
|
}
|
|
|
|
int
|
|
tm_format_real_time(char *x, size_t max, const char *fmt, btime t)
|
|
{
|
|
s64 t1 = t TO_S;
|
|
s64 t2 = t - t1 S;
|
|
|
|
time_t ts = t1;
|
|
struct tm tm;
|
|
if (!localtime_r(&ts, &tm))
|
|
return 0;
|
|
|
|
size_t tbuf_size = MIN(max, 4096);
|
|
byte *tbuf = alloca(tbuf_size);
|
|
if (!strfusec(tbuf, tbuf_size, fmt, t2))
|
|
return 0;
|
|
|
|
if (!strftime(x, max, tbuf, &tm))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|