bird/sysdep/unix/io.c
Martin Mares 30770df2ab If the main event queue is not empty, call select() with zero timeout, so
that the events are ran again after the FD's are checked. This allows us
to schedule I/O checks between processing of user commands.
1999-11-17 12:04:24 +00:00

990 lines
19 KiB
C

/*
* BIRD Internet Routing Daemon -- Unix I/O
*
* (c) 1998--1999 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
#include <sys/un.h>
#include <unistd.h>
#include <errno.h>
#ifndef HAVE_STRUCT_IP_MREQN
#include <net/if.h>
#endif
#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
#include "lib/event.h"
#include "nest/iface.h"
#ifdef IPV6
#include <linux/in6.h> /* FIXMEv6: glibc variant? */
#endif
#include "lib/unix.h"
/*
* Random Numbers
*/
u32
random_u32(void)
{
long int rand_low, rand_high;
rand_low = random();
rand_high = random();
return (rand_low & 0xffff) | ((rand_high & 0xffff) << 16);
}
/*
* Timers
*/
#define NEAR_TIMER_LIMIT 4
#ifdef TIME_T_IS_64BIT
#define TIME_INFINITY 0x7fffffffffffffff
#else
#ifdef TIME_T_IS_SIGNED
#define TIME_INFINITY 0x7fffffff
#else
#define TIME_INFINITY 0xffffffff
#endif
#endif
static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;
bird_clock_t now;
static void
tm_free(resource *r)
{
timer *t = (timer *) r;
tm_stop(t);
}
static void
tm_dump(resource *r)
{
timer *t = (timer *) r;
debug("(code %p, data %p, ", t->hook, t->data);
if (t->randomize)
debug("rand %d, ", t->randomize);
if (t->recurrent)
debug("recur %d, ", t->recurrent);
if (t->expires)
debug("expires in %d sec)\n", t->expires - now);
else
debug("inactive)\n");
}
static struct resclass tm_class = {
"Timer",
sizeof(timer),
tm_free,
tm_dump
};
timer *
tm_new(pool *p)
{
timer *t = ralloc(p, &tm_class);
t->hook = NULL;
t->data = NULL;
t->randomize = 0;
t->expires = 0;
return t;
}
static inline void
tm_insert_near(timer *t)
{
node *n = HEAD(near_timers);
while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
n = n->next;
insert_node(&t->n, n->prev);
}
void
tm_start(timer *t, unsigned after)
{
bird_clock_t when;
if (t->randomize)
after += random() % (t->randomize + 1);
when = now + after;
if (t->expires == when)
return;
if (t->expires)
rem_node(&t->n);
t->expires = when;
if (after <= NEAR_TIMER_LIMIT)
tm_insert_near(t);
else
{
if (!first_far_timer || first_far_timer > when)
first_far_timer = when;
add_tail(&far_timers, &t->n);
}
}
void
tm_stop(timer *t)
{
if (t->expires)
{
rem_node(&t->n);
t->expires = 0;
}
}
static void
tm_dump_them(char *name, list *l)
{
node *n;
timer *t;
debug("%s timers:\n", name);
WALK_LIST(n, *l)
{
t = SKIP_BACK(timer, n, n);
debug("%p ", t);
tm_dump(&t->r);
}
debug("\n");
}
void
tm_dump_all(void)
{
tm_dump_them("Near", &near_timers);
tm_dump_them("Far", &far_timers);
}
static inline time_t
tm_first_shot(void)
{
time_t x = first_far_timer;
if (!EMPTY_LIST(near_timers))
{
timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
if (t->expires < x)
x = t->expires;
}
return x;
}
static void
tm_shot(void)
{
timer *t;
node *n, *m;
if (first_far_timer <= now)
{
bird_clock_t limit = now + NEAR_TIMER_LIMIT;
first_far_timer = TIME_INFINITY;
n = HEAD(far_timers);
while (m = n->next)
{
t = SKIP_BACK(timer, n, n);
if (t->expires <= limit)
{
rem_node(n);
tm_insert_near(t);
}
else if (t->expires < first_far_timer)
first_far_timer = t->expires;
n = m;
}
}
while ((n = HEAD(near_timers)) -> next)
{
int delay;
t = SKIP_BACK(timer, n, n);
if (t->expires > now)
break;
rem_node(n);
delay = t->expires - now;
t->expires = 0;
if (t->recurrent)
{
int i = t->recurrent - delay;
if (i < 0)
i = 0;
tm_start(t, i);
}
t->hook(t);
}
}
bird_clock_t
tm_parse_date(char *x)
{
struct tm tm;
int n;
time_t t;
if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
return 0;
tm.tm_mon--;
tm.tm_year -= 1900;
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
t = mktime(&tm);
if (t == (time_t) -1)
return 0;
return t;
}
void
tm_format_date(char *x, bird_clock_t t)
{
struct tm *tm;
tm = localtime(&t);
sprintf(x, "%02d-%02d-%04d", tm->tm_mday, tm->tm_mon+1, tm->tm_year+1900);
}
/*
* Sockets
*/
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif
static list sock_list;
static void
sk_free(resource *r)
{
sock *s = (sock *) r;
if (s->fd >= 0)
rem_node(&s->n);
}
static void
sk_dump(resource *r)
{
sock *s = (sock *) r;
static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
sk_type_names[s->type],
s->data,
s->saddr,
s->sport,
s->daddr,
s->dport,
s->tos,
s->ttl,
s->iface ? s->iface->name : "none");
}
static struct resclass sk_class = {
"Socket",
sizeof(sock),
sk_free,
sk_dump
};
sock *
sk_new(pool *p)
{
sock *s = ralloc(p, &sk_class);
s->pool = p;
s->data = NULL;
s->saddr = s->daddr = IPA_NONE;
s->sport = s->dport = 0;
s->tos = s->ttl = -1;
s->iface = NULL;
s->rbuf = NULL;
s->rx_hook = NULL;
s->rbsize = 0;
s->tbuf = NULL;
s->tx_hook = NULL;
s->tbsize = 0;
s->err_hook = NULL;
s->fd = -1;
return s;
}
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: " x)
#ifdef IPV6
static inline void
set_inaddr(struct in6_addr *ia, ip_addr a)
{
ipa_hton(a);
memcpy(ia, &a, sizeof(a));
}
void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
sa->sin6_family = AF_INET6;
sa->sin6_port = htons(port);
sa->sin6_flowinfo = 0;
set_inaddr(&sa->sin6_addr, a);
}
void
get_sockaddr(sockaddr *sa, ip_addr *a, unsigned *port)
{
if (sa->sin6_family != AF_INET6)
bug("get_sockaddr called for wrong address family");
if (port)
*port = ntohs(sa->sin6_port);
memcpy(a, &sa->sin6_addr, sizeof(*a));
ipa_ntoh(*a);
}
#else
static inline void
set_inaddr(struct in_addr *ia, ip_addr a)
{
ipa_hton(a);
memcpy(&ia->s_addr, &a, sizeof(a));
}
void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
sa->sin_family = AF_INET;
sa->sin_port = htons(port);
set_inaddr(&sa->sin_addr, a);
}
void
get_sockaddr(sockaddr *sa, ip_addr *a, unsigned *port)
{
if (sa->sin_family != AF_INET)
bug("get_sockaddr called for wrong address family");
if (port)
*port = ntohs(sa->sin_port);
memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
ipa_ntoh(*a);
}
#endif
static char *
sk_setup(sock *s)
{
int fd = s->fd;
int one = 1;
char *err;
if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
ERR("fcntl(O_NONBLOCK)");
if (s->type == SK_UNIX)
return NULL;
#ifdef IPV6
if (s->ttl >= 0 && s->type != SK_UDP_MC && s->type != SK_IP_MC &&
setsockopt(fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
ERR("IPV6_UNICAST_HOPS");
#else
if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
WARN("IP_TOS");
if (s->ttl >= 0)
{
if (setsockopt(fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
ERR("IP_TTL");
if (setsockopt(fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
ERR("SO_DONTROUTE");
}
#endif
/* FIXME: Set send/receive buffers? */
/* FIXME: Set keepalive for TCP connections? */
err = NULL;
bad:
return err;
}
static void
sk_alloc_bufs(sock *s)
{
if (!s->rbuf && s->rbsize)
s->rbuf = mb_alloc(s->pool, s->rbsize);
s->rpos = s->rbuf;
if (!s->tbuf && s->tbsize)
s->tbuf = mb_alloc(s->pool, s->tbsize);
s->tpos = s->ttx = s->tbuf;
}
static void
sk_tcp_connected(sock *s)
{
s->rx_hook(s, 0);
s->type = SK_TCP;
sk_alloc_bufs(s);
}
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
int fd = accept(s->fd, sa, &al);
if (fd >= 0)
{
sock *t = sk_new(s->pool);
char *err;
t->type = type;
t->fd = fd;
add_tail(&sock_list, &t->n);
s->rx_hook(t, 0);
if (err = sk_setup(t))
{
log(L_ERR "Incoming connection: %s: %m", err);
s->err_hook(s, errno);
return 0;
}
sk_alloc_bufs(t);
return 1;
}
else if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "accept: %m");
s->err_hook(s, errno);
}
return 0;
}
int
sk_open(sock *s)
{
int fd, e;
sockaddr sa;
int zero = 0;
int one = 1;
int type = s->type;
int has_src = ipa_nonzero(s->saddr) || s->sport;
int has_dest = ipa_nonzero(s->daddr);
char *err;
switch (type)
{
case SK_TCP_ACTIVE:
case SK_TCP_PASSIVE:
fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
break;
case SK_UDP:
case SK_UDP_MC:
fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
break;
case SK_IP:
case SK_IP_MC:
fd = socket(BIRD_PF, SOCK_RAW, s->dport);
break;
case SK_MAGIC:
fd = s->fd;
break;
default:
bug("sk_open() called for invalid sock type %d", type);
}
if (fd < 0)
die("sk_open: socket: %m");
s->fd = fd;
if (err = sk_setup(s))
goto bad;
switch (type)
{
case SK_UDP:
case SK_IP:
if (s->iface) /* It's a broadcast socket */
#ifdef IPV6
bug("IPv6 has no broadcasts");
#else
if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &one, sizeof(one)) < 0)
ERR("SO_BROADCAST");
#endif
break;
case SK_UDP_MC:
case SK_IP_MC:
{
#ifdef IPV6
/* Fortunately, IPv6 socket interface is recent enough and therefore standardized */
ASSERT(s->iface && s->iface->addr);
if (has_dest)
{
int t = s->iface->index;
if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
ERR("IPV6_MULTICAST_HOPS");
if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
ERR("IPV6_MULTICAST_LOOP");
if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_IF, &t, sizeof(t)) < 0)
ERR("IPV6_MULTICAST_IF");
}
if (has_src)
{
struct ipv6_mreq mreq;
set_inaddr(&mreq.ipv6mr_multiaddr, s->daddr);
mreq.ipv6mr_ifindex = s->iface->index;
if (setsockopt(fd, SOL_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) < 0)
ERR("IPV6_ADD_MEMBERSHIP");
}
#else
/* With IPv4 there are zillions of different socket interface variants. Ugh. */
#ifdef HAVE_STRUCT_IP_MREQN
struct ip_mreqn mreq;
#define mreq_add mreq
ASSERT(s->iface && s->iface->addr);
mreq.imr_ifindex = s->iface->index;
set_inaddr(&mreq.imr_address, s->iface->addr->ip);
#else
struct in_addr mreq;
struct ip_mreq mreq_add;
ASSERT(s->iface && s->iface->addr);
set_inaddr(&mreq, s->iface->addr->ip);
#ifdef SO_BINDTODEVICE
{
struct ifreq ifr;
strcpy(ifr.ifr_name, s->iface->name);
if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, &ifr, sizeof(ifr)) < 0)
ERR("SO_BINDTODEVICE");
mreq_add.imr_interface.s_addr = INADDR_ANY;
}
#else
#error Multicasts not supported on PtP devices /* FIXME: Solve it somehow? */
mreq_add.imr_interface = mreq;
#endif
#endif
set_inaddr(&mreq_add.imr_multiaddr, s->daddr);
if (has_dest)
{
if (
#ifdef IP_DEFAULT_MULTICAST_TTL
s->ttl != IP_DEFAULT_MULTICAST_TTL &&
#endif
setsockopt(fd, SOL_IP, IP_MULTICAST_TTL, &s->ttl, sizeof(s->ttl)) < 0)
ERR("IP_MULTICAST_TTL");
if (
#ifdef IP_DEFAULT_MULTICAST_LOOP
IP_DEFAULT_MULTICAST_LOOP &&
#endif
setsockopt(fd, SOL_IP, IP_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
ERR("IP_MULTICAST_LOOP");
/* This defines where should we send _outgoing_ multicasts */
if (setsockopt(fd, SOL_IP, IP_MULTICAST_IF, &mreq, sizeof(mreq)) < 0)
ERR("IP_MULTICAST_IF");
}
/* And this one sets interface for _receiving_ multicasts from */
if (has_src && setsockopt(fd, SOL_IP, IP_ADD_MEMBERSHIP, &mreq_add, sizeof(mreq_add)) < 0)
ERR("IP_ADD_MEMBERSHIP");
#endif
break;
}
}
if (has_src)
{
int port;
if (type == SK_IP || type == SK_IP_MC)
port = 0;
else
{
port = s->sport;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
ERR("SO_REUSEADDR");
}
fill_in_sockaddr(&sa, s->saddr, port);
if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
ERR("bind");
}
fill_in_sockaddr(&sa, s->daddr, s->dport);
switch (type)
{
case SK_TCP_ACTIVE:
if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
sk_tcp_connected(s);
else if (errno != EINTR && errno != EAGAIN)
ERR("connect");
break;
case SK_TCP_PASSIVE:
if (listen(fd, 8))
ERR("listen");
break;
case SK_MAGIC:
break;
default:
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
{
int dont = IPV6_PMTUDISC_DONT;
if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
ERR("IPV6_MTU_DISCOVER");
}
#endif
#else
#ifdef IP_PMTUDISC
{
int dont = IP_PMTUDISC_DONT;
if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
ERR("IP_PMTUDISC");
}
#endif
#endif
}
sk_alloc_bufs(s);
add_tail(&sock_list, &s->n);
return 0;
bad:
log(L_ERR "sk_open: %s: %m", err);
close(fd);
s->fd = -1;
return -1;
}
int
sk_open_unix(sock *s, char *name)
{
int fd;
struct sockaddr_un sa;
char *err;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0)
die("sk_open_unix: socket: %m");
s->fd = fd;
if (err = sk_setup(s))
goto bad;
unlink(name);
sa.sun_family = AF_UNIX;
strcpy(sa.sun_path, name);
if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
ERR("bind");
if (listen(fd, 8))
ERR("listen");
sk_alloc_bufs(s);
add_tail(&sock_list, &s->n);
return 0;
bad:
log(L_ERR "sk_open_unix: %s: %m", err);
close(fd);
s->fd = -1;
return -1;
}
static int
sk_maybe_write(sock *s)
{
int e;
switch (s->type)
{
case SK_TCP:
case SK_MAGIC:
case SK_UNIX:
while (s->ttx != s->tpos)
{
e = write(s->fd, s->ttx, s->tpos - s->ttx);
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "write: %m");
s->err_hook(s, errno);
return -1;
}
return 0;
}
s->ttx += e;
}
s->ttx = s->tpos = s->tbuf;
return 1;
case SK_UDP:
case SK_UDP_MC:
case SK_IP:
case SK_IP_MC:
{
sockaddr sa;
if (s->tbuf == s->tpos)
return 1;
fill_in_sockaddr(&sa, s->faddr, s->fport);
e = sendto(s->fd, s->tbuf, s->tpos - s->tbuf, 0, (struct sockaddr *) &sa, sizeof(sa));
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "sendto: %m");
s->err_hook(s, errno);
return -1;
}
return 0;
}
s->tpos = s->tbuf;
return 1;
}
default:
bug("sk_maybe_write: unknown socket type %d", s->type);
}
}
int
sk_send(sock *s, unsigned len)
{
s->faddr = s->daddr;
s->fport = s->dport;
s->ttx = s->tbuf;
s->tpos = s->tbuf + len;
return sk_maybe_write(s);
}
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
s->faddr = addr;
s->fport = port;
s->ttx = s->tbuf;
s->tpos = s->tbuf + len;
return sk_maybe_write(s);
}
static int
sk_read(sock *s)
{
switch (s->type)
{
case SK_TCP_ACTIVE:
{
sockaddr sa;
fill_in_sockaddr(&sa, s->daddr, s->dport);
if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
sk_tcp_connected(s);
else if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "connect: %m");
s->err_hook(s, errno);
}
return 0;
}
case SK_TCP_PASSIVE:
{
sockaddr sa;
return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
}
case SK_UNIX_PASSIVE:
{
struct sockaddr_un sa;
return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
}
case SK_TCP:
case SK_UNIX:
{
int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);
if (c < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "read: %m");
s->err_hook(s, errno);
}
}
else if (!c)
s->err_hook(s, 0);
else
{
s->rpos += c;
if (s->rx_hook(s, s->rpos - s->rbuf))
s->rpos = s->rbuf;
return 1;
}
return 0;
}
case SK_MAGIC:
return s->rx_hook(s, 0);
default:
{
sockaddr sa;
int al = sizeof(sa);
int e = recvfrom(s->fd, s->rbuf, s->rbsize, 0, (struct sockaddr *) &sa, &al);
if (e < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
log(L_ERR "recvfrom: %m");
s->err_hook(s, errno);
}
return 0;
}
s->rpos = s->rbuf + e;
get_sockaddr(&sa, &s->faddr, &s->fport);
s->rx_hook(s, e);
return 1;
}
}
}
static void
sk_write(sock *s)
{
while (s->ttx != s->tbuf && sk_maybe_write(s) > 0)
s->tx_hook(s);
}
void
sk_dump_all(void)
{
node *n;
sock *s;
debug("Open sockets:\n");
WALK_LIST(n, sock_list)
{
s = SKIP_BACK(sock, n, n);
debug("%p ", s);
sk_dump(&s->r);
}
debug("\n");
}
#undef ERR
#undef WARN
/*
* Main I/O Loop
*/
volatile int async_config_flag; /* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;
void
io_init(void)
{
init_list(&near_timers);
init_list(&far_timers);
init_list(&sock_list);
init_list(&global_event_list);
krt_io_init();
now = time(NULL);
srandom((int) now);
}
void
io_loop(void)
{
fd_set rd, wr;
struct timeval timo;
time_t tout;
int hi, events;
sock *s;
node *n, *p;
/* FIXME: Use poll() if available */
FD_ZERO(&rd);
FD_ZERO(&wr);
for(;;)
{
events = ev_run_list(&global_event_list);
now = time(NULL);
tout = tm_first_shot();
if (tout <= now)
{
tm_shot();
continue;
}
timo.tv_sec = events ? 0 : tout - now;
timo.tv_usec = 0;
hi = 0;
WALK_LIST(n, sock_list)
{
s = SKIP_BACK(sock, n, n);
if (s->rx_hook)
{
FD_SET(s->fd, &rd);
if (s->fd > hi)
hi = s->fd;
}
if (s->tx_hook && s->ttx != s->tpos)
{
FD_SET(s->fd, &wr);
if (s->fd > hi)
hi = s->fd;
}
}
/*
* Yes, this is racy. But even if the signal comes before this test
* and entering select(), it gets caught on the next timer tick.
*/
if (async_config_flag)
{
async_config();
async_config_flag = 0;
continue;
}
if (async_dump_flag)
{
async_dump();
async_dump_flag = 0;
continue;
}
if (async_shutdown_flag)
{
async_shutdown();
async_shutdown_flag = 0;
continue;
}
/* And finally enter select() to find active sockets */
hi = select(hi+1, &rd, &wr, NULL, &timo);
if (hi < 0)
{
if (errno == EINTR || errno == EAGAIN)
continue;
die("select: %m");
}
if (hi)
{
WALK_LIST_DELSAFE(n, p, sock_list)
{
s = SKIP_BACK(sock, n, n);
if (FD_ISSET(s->fd, &rd))
{
FD_CLR(s->fd, &rd);
while (sk_read(s))
;
}
if (s->type != SK_DELETED && FD_ISSET(s->fd, &wr))
{
FD_CLR(s->fd, &wr);
sk_write(s);
}
if (s->type == SK_DELETED)
rfree(s);
}
}
}
}