bird/lib/resource.c
Maria Matejka 6cd3771378 Multipage allocation
We can also quite simply allocate bigger blocks. Anyway, we need these
blocks to be aligned to their size which needs one mmap() two times
bigger and then two munmap()s returning the unaligned parts.

The user can specify -B <N> on startup when <N> is the exponent of 2,
setting the block size to 2^N. On most systems, N is 12, anyway if you
know that your configuration is going to eat gigabytes of RAM, you are
almost forced to raise your block size as you may easily get into memory
fragmentation issues or you have to raise your maximum mapping count,
e.g. "sysctl vm.max_map_count=(number)".
2021-10-13 19:01:22 +02:00

499 lines
9.8 KiB
C

/*
* BIRD Resource Manager
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/string.h"
/**
* DOC: Resource pools
*
* Resource pools (&pool) are just containers holding a list of
* other resources. Freeing a pool causes all the listed resources
* to be freed as well. Each existing &resource is linked to some pool
* except for a root pool which isn't linked anywhere, so all the
* resources form a tree structure with internal nodes corresponding
* to pools and leaves being the other resources.
*
* Example: Almost all modules of BIRD have their private pool which
* is freed upon shutdown of the module.
*/
struct pool {
resource r;
list inside;
struct pool_pages *pages;
const char *name;
};
struct pool_pages {
uint free;
uint used;
void *ptr[0];
};
#define POOL_PAGES_MAX ((page_size - sizeof(struct pool_pages)) / sizeof (void *))
static void pool_dump(resource *);
static void pool_free(resource *);
static resource *pool_lookup(resource *, unsigned long);
static size_t pool_memsize(resource *P);
static struct resclass pool_class = {
"Pool",
sizeof(pool),
pool_free,
pool_dump,
pool_lookup,
pool_memsize
};
pool root_pool;
void *alloc_sys_page(void);
void free_sys_page(void *);
static int indent;
/**
* rp_new - create a resource pool
* @p: parent pool
* @name: pool name (to be included in debugging dumps)
*
* rp_new() creates a new resource pool inside the specified
* parent pool.
*/
pool *
rp_new(pool *p, const char *name)
{
pool *z = ralloc(p, &pool_class);
z->name = name;
init_list(&z->inside);
return z;
}
static void
pool_free(resource *P)
{
pool *p = (pool *) P;
resource *r, *rr;
r = HEAD(p->inside);
while (rr = (resource *) r->n.next)
{
r->class->free(r);
xfree(r);
r = rr;
}
if (p->pages)
{
ASSERT_DIE(!p->pages->used);
for (uint i=0; i<p->pages->free; i++)
free_sys_page(p->pages->ptr[i]);
free_sys_page(p->pages);
}
}
static void
pool_dump(resource *P)
{
pool *p = (pool *) P;
resource *r;
debug("%s\n", p->name);
indent += 3;
WALK_LIST(r, p->inside)
rdump(r);
indent -= 3;
}
static size_t
pool_memsize(resource *P)
{
pool *p = (pool *) P;
resource *r;
size_t sum = sizeof(pool) + ALLOC_OVERHEAD;
WALK_LIST(r, p->inside)
sum += rmemsize(r);
if (p->pages)
sum += page_size * (p->pages->used + p->pages->free + 1);
return sum;
}
static resource *
pool_lookup(resource *P, unsigned long a)
{
pool *p = (pool *) P;
resource *r, *q;
WALK_LIST(r, p->inside)
if (r->class->lookup && (q = r->class->lookup(r, a)))
return q;
return NULL;
}
/**
* rmove - move a resource
* @res: resource
* @p: pool to move the resource to
*
* rmove() moves a resource from one pool to another.
*/
void rmove(void *res, pool *p)
{
resource *r = res;
if (r)
{
if (r->n.next)
rem_node(&r->n);
add_tail(&p->inside, &r->n);
}
}
/**
* rfree - free a resource
* @res: resource
*
* rfree() frees the given resource and all information associated
* with it. In case it's a resource pool, it also frees all the objects
* living inside the pool.
*
* It works by calling a class-specific freeing function.
*/
void
rfree(void *res)
{
resource *r = res;
if (!r)
return;
if (r->n.next)
rem_node(&r->n);
r->class->free(r);
r->class = NULL;
xfree(r);
}
/**
* rdump - dump a resource
* @res: resource
*
* This function prints out all available information about the given
* resource to the debugging output.
*
* It works by calling a class-specific dump function.
*/
void
rdump(void *res)
{
char x[16];
resource *r = res;
bsprintf(x, "%%%ds%%p ", indent);
debug(x, "", r);
if (r)
{
debug("%s ", r->class->name);
r->class->dump(r);
}
else
debug("NULL\n");
}
size_t
rmemsize(void *res)
{
resource *r = res;
if (!r)
return 0;
if (!r->class->memsize)
return r->class->size + ALLOC_OVERHEAD;
return r->class->memsize(r);
}
/**
* ralloc - create a resource
* @p: pool to create the resource in
* @c: class of the new resource
*
* This function is called by the resource classes to create a new
* resource of the specified class and link it to the given pool.
* Allocated memory is zeroed. Size of the resource structure is taken
* from the @size field of the &resclass.
*/
void *
ralloc(pool *p, struct resclass *c)
{
resource *r = xmalloc(c->size);
bzero(r, c->size);
r->class = c;
if (p)
add_tail(&p->inside, &r->n);
return r;
}
/**
* rlookup - look up a memory location
* @a: memory address
*
* This function examines all existing resources to see whether
* the address @a is inside any resource. It's used for debugging
* purposes only.
*
* It works by calling a class-specific lookup function for each
* resource.
*/
void
rlookup(unsigned long a)
{
resource *r;
debug("Looking up %08lx\n", a);
if (r = pool_lookup(&root_pool.r, a))
rdump(r);
else
debug("Not found.\n");
}
/**
* resource_init - initialize the resource manager
*
* This function is called during BIRD startup. It initializes
* all data structures of the resource manager and creates the
* root pool.
*/
void
resource_init(void)
{
root_pool.r.class = &pool_class;
root_pool.name = "Root";
init_list(&root_pool.inside);
}
/**
* DOC: Memory blocks
*
* Memory blocks are pieces of contiguous allocated memory.
* They are a bit non-standard since they are represented not by a pointer
* to &resource, but by a void pointer to the start of data of the
* memory block. All memory block functions know how to locate the header
* given the data pointer.
*
* Example: All "unique" data structures such as hash tables are allocated
* as memory blocks.
*/
struct mblock {
resource r;
unsigned size;
uintptr_t data_align[0];
byte data[0];
};
static void mbl_free(resource *r UNUSED)
{
}
static void mbl_debug(resource *r)
{
struct mblock *m = (struct mblock *) r;
debug("(size=%d)\n", m->size);
}
static resource *
mbl_lookup(resource *r, unsigned long a)
{
struct mblock *m = (struct mblock *) r;
if ((unsigned long) m->data <= a && (unsigned long) m->data + m->size > a)
return r;
return NULL;
}
static size_t
mbl_memsize(resource *r)
{
struct mblock *m = (struct mblock *) r;
return ALLOC_OVERHEAD + sizeof(struct mblock) + m->size;
}
static struct resclass mb_class = {
"Memory",
0,
mbl_free,
mbl_debug,
mbl_lookup,
mbl_memsize
};
/**
* mb_alloc - allocate a memory block
* @p: pool
* @size: size of the block
*
* mb_alloc() allocates memory of a given size and creates
* a memory block resource representing this memory chunk
* in the pool @p.
*
* Please note that mb_alloc() returns a pointer to the memory
* chunk, not to the resource, hence you have to free it using
* mb_free(), not rfree().
*/
void *
mb_alloc(pool *p, unsigned size)
{
struct mblock *b = xmalloc(sizeof(struct mblock) + size);
b->r.class = &mb_class;
b->r.n = (node) {};
add_tail(&p->inside, &b->r.n);
b->size = size;
return b->data;
}
/**
* mb_allocz - allocate and clear a memory block
* @p: pool
* @size: size of the block
*
* mb_allocz() allocates memory of a given size, initializes it to
* zeroes and creates a memory block resource representing this memory
* chunk in the pool @p.
*
* Please note that mb_allocz() returns a pointer to the memory
* chunk, not to the resource, hence you have to free it using
* mb_free(), not rfree().
*/
void *
mb_allocz(pool *p, unsigned size)
{
void *x = mb_alloc(p, size);
bzero(x, size);
return x;
}
/**
* mb_realloc - reallocate a memory block
* @m: memory block
* @size: new size of the block
*
* mb_realloc() changes the size of the memory block @m to a given size.
* The contents will be unchanged to the minimum of the old and new sizes;
* newly allocated memory will be uninitialized. Contrary to realloc()
* behavior, @m must be non-NULL, because the resource pool is inherited
* from it.
*
* Like mb_alloc(), mb_realloc() also returns a pointer to the memory
* chunk, not to the resource, hence you have to free it using
* mb_free(), not rfree().
*/
void *
mb_realloc(void *m, unsigned size)
{
struct mblock *b = SKIP_BACK(struct mblock, data, m);
b = xrealloc(b, sizeof(struct mblock) + size);
update_node(&b->r.n);
b->size = size;
return b->data;
}
/**
* mb_move - move a memory block
* @m: memory block
* @p: target pool
*
* mb_move() moves the given memory block to another pool in the same way
* as rmove() moves a plain resource.
*/
void
mb_move(void *m, pool *p)
{
struct mblock *b = SKIP_BACK(struct mblock, data, m);
rmove(b, p);
}
/**
* mb_free - free a memory block
* @m: memory block
*
* mb_free() frees all memory associated with the block @m.
*/
void
mb_free(void *m)
{
if (!m)
return;
struct mblock *b = SKIP_BACK(struct mblock, data, m);
rfree(b);
}
void *
alloc_page(pool *p)
{
if (!p->pages)
{
p->pages = alloc_sys_page();
p->pages->free = 0;
p->pages->used = 1;
}
else
p->pages->used++;
if (p->pages->free)
{
void *ptr = p->pages->ptr[--p->pages->free];
bzero(ptr, page_size);
return ptr;
}
else
return alloc_sys_page();
}
void
free_page(pool *p, void *ptr)
{
ASSERT_DIE(p->pages);
p->pages->used--;
if (p->pages->free >= POOL_PAGES_MAX)
return free_sys_page(ptr);
else
p->pages->ptr[p->pages->free++] = ptr;
}
#define STEP_UP(x) ((x) + (x)/2 + 4)
void
buffer_realloc(void **buf, unsigned *size, unsigned need, unsigned item_size)
{
unsigned nsize = MIN(*size, need);
while (nsize < need)
nsize = STEP_UP(nsize);
*buf = mb_realloc(*buf, nsize * item_size);
*size = nsize;
}