bird/lib/slab.c
Maria Matejka 6cd3771378 Multipage allocation
We can also quite simply allocate bigger blocks. Anyway, we need these
blocks to be aligned to their size which needs one mmap() two times
bigger and then two munmap()s returning the unaligned parts.

The user can specify -B <N> on startup when <N> is the exponent of 2,
setting the block size to 2^N. On most systems, N is 12, anyway if you
know that your configuration is going to eat gigabytes of RAM, you are
almost forced to raise your block size as you may easily get into memory
fragmentation issues or you have to raise your maximum mapping count,
e.g. "sysctl vm.max_map_count=(number)".
2021-10-13 19:01:22 +02:00

409 lines
8.1 KiB
C

/*
* BIRD Resource Manager -- A SLAB-like Memory Allocator
*
* Heavily inspired by the original SLAB paper by Jeff Bonwick.
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
* (c) 2020 Maria Matejka <mq@jmq.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Slabs
*
* Slabs are collections of memory blocks of a fixed size.
* They support very fast allocation and freeing of such blocks, prevent memory
* fragmentation and optimize L2 cache usage. Slabs have been invented by Jeff Bonwick
* and published in USENIX proceedings as `The Slab Allocator: An Object-Caching Kernel
* Memory Allocator'. Our implementation follows this article except that we don't use
* constructors and destructors.
*
* When the |DEBUGGING| switch is turned on, we automatically fill all
* newly allocated and freed blocks with a special pattern to make detection
* of use of uninitialized or already freed memory easier.
*
* Example: Nodes of a FIB are allocated from a per-FIB Slab.
*/
#include <stdlib.h>
#include <stdint.h>
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/string.h"
#undef FAKE_SLAB /* Turn on if you want to debug memory allocations */
#ifdef DEBUGGING
#define POISON /* Poison all regions after they are freed */
#endif
static void slab_free(resource *r);
static void slab_dump(resource *r);
static resource *slab_lookup(resource *r, unsigned long addr);
static size_t slab_memsize(resource *r);
#ifdef FAKE_SLAB
/*
* Fake version used for debugging.
*/
struct slab {
resource r;
uint size;
list objs;
};
static struct resclass sl_class = {
"FakeSlab",
sizeof(struct slab),
slab_free,
slab_dump,
NULL,
slab_memsize
};
struct sl_obj {
node n;
uintptr_t data_align[0];
byte data[0];
};
slab *
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
s->size = size;
init_list(&s->objs);
return s;
}
void *
sl_alloc(slab *s)
{
struct sl_obj *o = xmalloc(sizeof(struct sl_obj) + s->size);
add_tail(&s->objs, &o->n);
return o->data;
}
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->size);
return obj;
}
void
sl_free(slab *s, void *oo)
{
struct sl_obj *o = SKIP_BACK(struct sl_obj, data, oo);
rem_node(&o->n);
xfree(o);
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
struct sl_obj *o, *p;
for(o = HEAD(s->objs); p = (struct sl_obj *) o->n.next; o = p)
xfree(o);
}
static void
slab_dump(resource *r)
{
slab *s = (slab *) r;
int cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
debug("(%d objects per %d bytes)\n", cnt, s->size);
}
static size_t
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
return ALLOC_OVERHEAD + sizeof(struct slab) + cnt * (ALLOC_OVERHEAD + s->size);
}
#else
/*
* Real efficient version.
*/
#define MAX_EMPTY_HEADS 1
struct slab {
resource r;
pool *p;
uint obj_size, head_size, head_bitfield_len;
uint objs_per_slab, num_empty_heads, data_size;
list empty_heads, partial_heads, full_heads;
};
static struct resclass sl_class = {
"Slab",
sizeof(struct slab),
slab_free,
slab_dump,
slab_lookup,
slab_memsize
};
struct sl_head {
node n;
u32 num_full;
u32 used_bits[0];
};
struct sl_alignment { /* Magic structure for testing of alignment */
byte data;
int x[0];
};
#define SL_GET_HEAD(x) ((struct sl_head *) PAGE_HEAD(x))
/**
* sl_new - create a new Slab
* @p: resource pool
* @size: block size
*
* This function creates a new Slab resource from which
* objects of size @size can be allocated.
*/
slab *
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
s->p = p;
uint align = sizeof(struct sl_alignment);
if (align < sizeof(int))
align = sizeof(int);
s->data_size = size;
size = (size + align - 1) / align * align;
s->obj_size = size;
s->head_size = sizeof(struct sl_head);
do {
s->objs_per_slab = (page_size - s->head_size) / size;
s->head_bitfield_len = (s->objs_per_slab + 31) / 32;
s->head_size = (
sizeof(struct sl_head)
+ sizeof(u32) * s->head_bitfield_len
+ align - 1)
/ align * align;
} while (s->objs_per_slab * size + s->head_size > page_size);
if (!s->objs_per_slab)
bug("Slab: object too large");
s->num_empty_heads = 0;
init_list(&s->empty_heads);
init_list(&s->partial_heads);
init_list(&s->full_heads);
return s;
}
/**
* sl_alloc - allocate an object from Slab
* @s: slab
*
* sl_alloc() allocates space for a single object from the
* Slab and returns a pointer to the object.
*/
void *
sl_alloc(slab *s)
{
struct sl_head *h;
redo:
h = HEAD(s->partial_heads);
if (!h->n.next)
goto no_partial;
okay:
for (uint i=0; i<s->head_bitfield_len; i++)
if (~h->used_bits[i])
{
uint pos = u32_ctz(~h->used_bits[i]);
if (i * 32 + pos >= s->objs_per_slab)
break;
h->used_bits[i] |= 1 << pos;
h->num_full++;
void *out = ((void *) h) + s->head_size + (i * 32 + pos) * s->obj_size;
#ifdef POISON
memset(out, 0xcd, s->data_size);
#endif
return out;
}
rem_node(&h->n);
add_tail(&s->full_heads, &h->n);
goto redo;
no_partial:
h = HEAD(s->empty_heads);
if (h->n.next)
{
rem_node(&h->n);
add_head(&s->partial_heads, &h->n);
s->num_empty_heads--;
goto okay;
}
h = alloc_page(s->p);
#ifdef POISON
memset(h, 0xba, page_size);
#endif
ASSERT_DIE(SL_GET_HEAD(h) == h);
memset(h, 0, s->head_size);
add_head(&s->partial_heads, &h->n);
goto okay;
}
/**
* sl_allocz - allocate an object from Slab and zero it
* @s: slab
*
* sl_allocz() allocates space for a single object from the
* Slab and returns a pointer to the object after zeroing out
* the object memory.
*/
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->data_size);
return obj;
}
/**
* sl_free - return a free object back to a Slab
* @s: slab
* @oo: object returned by sl_alloc()
*
* This function frees memory associated with the object @oo
* and returns it back to the Slab @s.
*/
void
sl_free(slab *s, void *oo)
{
struct sl_head *h = SL_GET_HEAD(oo);
#ifdef POISON
memset(oo, 0xdb, s->data_size);
#endif
uint offset = oo - ((void *) h) - s->head_size;
ASSERT_DIE(offset % s->obj_size == 0);
uint pos = offset / s->obj_size;
ASSERT_DIE(pos < s->objs_per_slab);
h->used_bits[pos / 32] &= ~(1 << (pos % 32));
if (h->num_full-- == s->objs_per_slab)
{
rem_node(&h->n);
add_head(&s->partial_heads, &h->n);
}
else if (!h->num_full)
{
rem_node(&h->n);
if (s->num_empty_heads >= MAX_EMPTY_HEADS)
{
#ifdef POISON
memset(h, 0xde, page_size);
#endif
free_page(s->p, h);
}
else
{
add_head(&s->empty_heads, &h->n);
s->num_empty_heads++;
}
}
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
struct sl_head *h, *g;
WALK_LIST_DELSAFE(h, g, s->empty_heads)
free_page(s->p, h);
WALK_LIST_DELSAFE(h, g, s->partial_heads)
free_page(s->p, h);
WALK_LIST_DELSAFE(h, g, s->full_heads)
free_page(s->p, h);
}
static void
slab_dump(resource *r)
{
slab *s = (slab *) r;
int ec=0, pc=0, fc=0;
struct sl_head *h;
WALK_LIST(h, s->empty_heads)
ec++;
WALK_LIST(h, s->partial_heads)
pc++;
WALK_LIST(h, s->full_heads)
fc++;
debug("(%de+%dp+%df blocks per %d objs per %d bytes)\n", ec, pc, fc, s->objs_per_slab, s->obj_size);
}
static size_t
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t heads = 0;
struct sl_head *h;
WALK_LIST(h, s->empty_heads)
heads++;
WALK_LIST(h, s->partial_heads)
heads++;
WALK_LIST(h, s->full_heads)
heads++;
// return ALLOC_OVERHEAD + sizeof(struct slab) + heads * (ALLOC_OVERHEAD + page_size);
return ALLOC_OVERHEAD + sizeof(struct slab); /* The page sizes are accounted for in the pool */
}
static resource *
slab_lookup(resource *r, unsigned long a)
{
slab *s = (slab *) r;
struct sl_head *h;
WALK_LIST(h, s->partial_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
WALK_LIST(h, s->full_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
return NULL;
}
#endif