587 lines
12 KiB
C
587 lines
12 KiB
C
/*
|
|
* BIRD Library -- IP address functions
|
|
*
|
|
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: IP addresses
|
|
*
|
|
* BIRD uses its own abstraction of IP address in order to share the same
|
|
* code for both IPv4 and IPv6. IP addresses are represented as entities
|
|
* of type &ip_addr which are never to be treated as numbers and instead
|
|
* they must be manipulated using the following functions and macros.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/ip.h"
|
|
|
|
|
|
int
|
|
ip6_compare(ip6_addr a, ip6_addr b)
|
|
{
|
|
int i;
|
|
for (i=0; i<4; i++)
|
|
if (a.addr[i] > b.addr[i])
|
|
return 1;
|
|
else if (a.addr[i] < b.addr[i])
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
ip6_addr
|
|
ip6_mkmask(uint n)
|
|
{
|
|
ip6_addr a;
|
|
int i;
|
|
|
|
for (i=0; i<4; i++)
|
|
{
|
|
if (!n)
|
|
a.addr[i] = 0;
|
|
else if (n >= 32)
|
|
{
|
|
a.addr[i] = ~0;
|
|
n -= 32;
|
|
}
|
|
else
|
|
{
|
|
a.addr[i] = u32_mkmask(n);
|
|
n = 0;
|
|
}
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
uint
|
|
ip6_masklen(ip6_addr *a)
|
|
{
|
|
int i, j, n;
|
|
|
|
for (i=0, n=0; i<4; i++, n+=32)
|
|
if (a->addr[i] != ~0U)
|
|
{
|
|
j = u32_masklen(a->addr[i]);
|
|
if (j == 255)
|
|
return j;
|
|
n += j;
|
|
while (++i < 4)
|
|
if (a->addr[i])
|
|
return 255;
|
|
break;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
int
|
|
ip4_classify(ip4_addr ad)
|
|
{
|
|
u32 a = _I(ad);
|
|
u32 b = a >> 24U;
|
|
|
|
if (b && b <= 0xdf)
|
|
{
|
|
if (b == 0x7f)
|
|
return IADDR_HOST | SCOPE_HOST;
|
|
else if ((b == 0x0a) ||
|
|
((a & 0xffff0000) == 0xc0a80000) ||
|
|
((a & 0xfff00000) == 0xac100000))
|
|
return IADDR_HOST | SCOPE_SITE;
|
|
else
|
|
return IADDR_HOST | SCOPE_UNIVERSE;
|
|
}
|
|
|
|
if (b >= 0xe0 && b <= 0xef)
|
|
return IADDR_MULTICAST | SCOPE_UNIVERSE;
|
|
|
|
if (a == 0xffffffff)
|
|
return IADDR_BROADCAST | SCOPE_LINK;
|
|
|
|
return IADDR_INVALID;
|
|
}
|
|
|
|
int
|
|
ip6_classify(ip6_addr *a)
|
|
{
|
|
u32 x = a->addr[0];
|
|
|
|
if ((x & 0xe0000000) == 0x20000000) /* 2000::/3 Aggregatable Global Unicast Address */
|
|
return IADDR_HOST | SCOPE_UNIVERSE;
|
|
if ((x & 0xffc00000) == 0xfe800000) /* fe80::/10 Link-Local Address */
|
|
return IADDR_HOST | SCOPE_LINK;
|
|
if ((x & 0xffc00000) == 0xfec00000) /* fec0::/10 Site-Local Address */
|
|
return IADDR_HOST | SCOPE_SITE;
|
|
if ((x & 0xfe000000) == 0xfc000000) /* fc00::/7 Unique Local Unicast Address (RFC 4193) */
|
|
return IADDR_HOST | SCOPE_SITE;
|
|
if ((x & 0xff000000) == 0xff000000) /* ff00::/8 Multicast Address */
|
|
{
|
|
uint scope = (x >> 16) & 0x0f;
|
|
switch (scope)
|
|
{
|
|
case 1: return IADDR_MULTICAST | SCOPE_HOST;
|
|
case 2: return IADDR_MULTICAST | SCOPE_LINK;
|
|
case 5: return IADDR_MULTICAST | SCOPE_SITE;
|
|
case 8: return IADDR_MULTICAST | SCOPE_ORGANIZATION;
|
|
case 14: return IADDR_MULTICAST | SCOPE_UNIVERSE;
|
|
default: return IADDR_MULTICAST | SCOPE_UNDEFINED;
|
|
}
|
|
}
|
|
|
|
if (!x && !a->addr[1])
|
|
{
|
|
u32 a2 = a->addr[2];
|
|
u32 a3 = a->addr[3];
|
|
|
|
if (a2 == 0 && a3 == 1)
|
|
return IADDR_HOST | SCOPE_HOST; /* Loopback address */
|
|
if (a2 == 0)
|
|
return ip4_classify(_MI4(a3)); /* IPv4 compatible addresses */
|
|
if (a2 == 0xffff)
|
|
return ip4_classify(_MI4(a3)); /* IPv4 mapped addresses */
|
|
|
|
return IADDR_INVALID;
|
|
}
|
|
|
|
return IADDR_HOST | SCOPE_UNDEFINED;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Conversion of IPv6 address to presentation format and vice versa.
|
|
* Heavily inspired by routines written by Paul Vixie for the BIND project
|
|
* and of course by RFC 2373.
|
|
*/
|
|
|
|
|
|
char *
|
|
ip4_ntop(ip4_addr a, char *b)
|
|
{
|
|
u32 x = _I(a);
|
|
return b + bsprintf(b, "%d.%d.%d.%d", (x >> 24) & 0xff, (x >> 16) & 0xff, (x >> 8) & 0xff, x & 0xff);
|
|
}
|
|
|
|
|
|
char *
|
|
ip6_ntop(ip6_addr a, char *b)
|
|
{
|
|
u16 words[8];
|
|
int bestpos, bestlen, curpos, curlen, i;
|
|
|
|
/* First of all, preprocess the address and find the longest run of zeros */
|
|
bestlen = bestpos = curpos = curlen = 0;
|
|
for (i=0; i<8; i++)
|
|
{
|
|
u32 x = a.addr[i/2];
|
|
words[i] = ((i%2) ? x : (x >> 16)) & 0xffff;
|
|
if (words[i])
|
|
curlen = 0;
|
|
else
|
|
{
|
|
if (!curlen)
|
|
curpos = i;
|
|
curlen++;
|
|
if (curlen > bestlen)
|
|
{
|
|
bestpos = curpos;
|
|
bestlen = curlen;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bestlen < 2)
|
|
bestpos = -1;
|
|
|
|
/* Is it an encapsulated IPv4 address? */
|
|
if (!bestpos && ((bestlen == 5 && a.addr[2] == 0xffff) || (bestlen == 6)))
|
|
{
|
|
u32 x = a.addr[3];
|
|
b += bsprintf(b, "::%s%d.%d.%d.%d",
|
|
a.addr[2] ? "ffff:" : "",
|
|
(x >> 24) & 0xff,
|
|
(x >> 16) & 0xff,
|
|
(x >> 8) & 0xff,
|
|
x & 0xff);
|
|
return b;
|
|
}
|
|
|
|
/* Normal IPv6 formatting, compress the largest sequence of zeros */
|
|
for (i=0; i<8; i++)
|
|
{
|
|
if (i == bestpos)
|
|
{
|
|
i += bestlen - 1;
|
|
*b++ = ':';
|
|
if (i == 7)
|
|
*b++ = ':';
|
|
}
|
|
else
|
|
{
|
|
if (i)
|
|
*b++ = ':';
|
|
b += bsprintf(b, "%x", words[i]);
|
|
}
|
|
}
|
|
*b = 0;
|
|
return b;
|
|
}
|
|
|
|
int
|
|
ip4_pton(const char *a, ip4_addr *o)
|
|
{
|
|
int i;
|
|
unsigned long int l;
|
|
u32 ia = 0;
|
|
|
|
i=4;
|
|
while (i--)
|
|
{
|
|
char *d, *c = strchr(a, '.');
|
|
if (!c != !i)
|
|
return 0;
|
|
l = bstrtoul10(a, &d);
|
|
if (((d != c) && *d) || (l > 255))
|
|
return 0;
|
|
ia = (ia << 8) | l;
|
|
if (c)
|
|
c++;
|
|
a = c;
|
|
}
|
|
*o = ip4_from_u32(ia);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
ip6_pton(const char *a, ip6_addr *o)
|
|
{
|
|
u16 words[8];
|
|
int i, j, k, l, hfil;
|
|
const char *start;
|
|
|
|
if (!a[0]) /* Empty string check */
|
|
return 0;
|
|
|
|
if (a[0] == ':') /* Leading :: */
|
|
{
|
|
if (a[1] != ':')
|
|
return 0;
|
|
a++;
|
|
}
|
|
|
|
hfil = -1;
|
|
i = 0;
|
|
while (*a)
|
|
{
|
|
if (*a == ':') /* :: */
|
|
{
|
|
if (hfil >= 0)
|
|
return 0;
|
|
|
|
hfil = i;
|
|
a++;
|
|
continue;
|
|
}
|
|
|
|
j = 0;
|
|
l = 0;
|
|
start = a;
|
|
for (;;)
|
|
{
|
|
if (*a >= '0' && *a <= '9')
|
|
k = *a++ - '0';
|
|
else if (*a >= 'A' && *a <= 'F')
|
|
k = *a++ - 'A' + 10;
|
|
else if (*a >= 'a' && *a <= 'f')
|
|
k = *a++ - 'a' + 10;
|
|
else
|
|
break;
|
|
|
|
j = (j << 4) + k;
|
|
if (j >= 0x10000 || ++l > 4)
|
|
return 0;
|
|
}
|
|
|
|
if (*a == ':' && a[1])
|
|
a++;
|
|
else if (*a == '.' && (i == 6 || (i < 6 && hfil >= 0)))
|
|
{ /* Embedded IPv4 address */
|
|
ip4_addr x;
|
|
if (!ip4_pton(start, &x))
|
|
return 0;
|
|
words[i++] = _I(x) >> 16;
|
|
words[i++] = _I(x);
|
|
break;
|
|
}
|
|
else if (*a)
|
|
return 0;
|
|
|
|
if (i >= 8)
|
|
return 0;
|
|
|
|
words[i++] = j;
|
|
}
|
|
|
|
/* Replace :: with an appropriate number of zeros */
|
|
if (hfil >= 0)
|
|
{
|
|
j = 8 - i;
|
|
for (i=7; i-j >= hfil; i--)
|
|
words[i] = words[i-j];
|
|
for (; i>=hfil; i--)
|
|
words[i] = 0;
|
|
}
|
|
else if (i != 8) /* Incomplete address */
|
|
return 0;
|
|
|
|
/* Convert the address to ip6_addr format */
|
|
for (i=0; i<4; i++)
|
|
o->addr[i] = (words[2*i] << 16) | words[2*i+1];
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* ip_scope_text - get textual representation of address scope
|
|
* @scope: scope (%SCOPE_xxx)
|
|
*
|
|
* Returns a pointer to a textual name of the scope given.
|
|
*/
|
|
char *
|
|
ip_scope_text(uint scope)
|
|
{
|
|
static char *scope_table[] = { "host", "link", "site", "org", "univ", "undef" };
|
|
|
|
if (scope > SCOPE_UNDEFINED)
|
|
return "?";
|
|
else
|
|
return scope_table[scope];
|
|
}
|
|
|
|
ip4_addr
|
|
ip4_class_mask(ip4_addr ad)
|
|
{
|
|
u32 m, a = _I(ad);
|
|
|
|
if (a == 0x00000000)
|
|
m = 0x00000000;
|
|
else if (a < 0x80000000)
|
|
m = 0xff000000;
|
|
else if (a < 0xc0000000)
|
|
m = 0xffff0000;
|
|
else
|
|
m = 0xffffff00;
|
|
if (a & ~m)
|
|
m = 0xffffffff;
|
|
|
|
return _MI4(m);
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* ipa_equal - compare two IP addresses for equality
|
|
* @x: IP address
|
|
* @y: IP address
|
|
*
|
|
* ipa_equal() returns 1 if @x and @y represent the same IP address, else 0.
|
|
*/
|
|
int ipa_equal(ip_addr x, ip_addr y) { DUMMY }
|
|
|
|
/**
|
|
* ipa_nonzero - test if an IP address is defined
|
|
* @x: IP address
|
|
*
|
|
* ipa_nonzero returns 1 if @x is a defined IP address (not all bits are zero),
|
|
* else 0.
|
|
*
|
|
* The undefined all-zero address is reachable as a |IPA_NONE| macro.
|
|
*/
|
|
int ipa_nonzero(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_and - compute bitwise and of two IP addresses
|
|
* @x: IP address
|
|
* @y: IP address
|
|
*
|
|
* This function returns a bitwise and of @x and @y. It's primarily
|
|
* used for network masking.
|
|
*/
|
|
ip_addr ipa_and(ip_addr x, ip_addr y) { DUMMY }
|
|
|
|
/**
|
|
* ipa_or - compute bitwise or of two IP addresses
|
|
* @x: IP address
|
|
* @y: IP address
|
|
*
|
|
* This function returns a bitwise or of @x and @y.
|
|
*/
|
|
ip_addr ipa_or(ip_addr x, ip_addr y) { DUMMY }
|
|
|
|
/**
|
|
* ipa_xor - compute bitwise xor of two IP addresses
|
|
* @x: IP address
|
|
* @y: IP address
|
|
*
|
|
* This function returns a bitwise xor of @x and @y.
|
|
*/
|
|
ip_addr ipa_xor(ip_addr x, ip_addr y) { DUMMY }
|
|
|
|
/**
|
|
* ipa_not - compute bitwise negation of two IP addresses
|
|
* @x: IP address
|
|
*
|
|
* This function returns a bitwise negation of @x.
|
|
*/
|
|
ip_addr ipa_not(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_mkmask - create a netmask
|
|
* @x: prefix length
|
|
*
|
|
* This function returns an &ip_addr corresponding of a netmask
|
|
* of an address prefix of size @x.
|
|
*/
|
|
ip_addr ipa_mkmask(int x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_masklen - calculate netmask length
|
|
* @x: IP address
|
|
*
|
|
* This function checks whether @x represents a valid netmask and
|
|
* returns the size of the associate network prefix or -1 for invalid
|
|
* mask.
|
|
*/
|
|
int ipa_masklen(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_hash - hash IP addresses
|
|
* @x: IP address
|
|
*
|
|
* ipa_hash() returns a 16-bit hash value of the IP address @x.
|
|
*/
|
|
int ipa_hash(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_hton - convert IP address to network order
|
|
* @x: IP address
|
|
*
|
|
* Converts the IP address @x to the network byte order.
|
|
*
|
|
* Beware, this is a macro and it alters the argument!
|
|
*/
|
|
void ipa_hton(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_ntoh - convert IP address to host order
|
|
* @x: IP address
|
|
*
|
|
* Converts the IP address @x from the network byte order.
|
|
*
|
|
* Beware, this is a macro and it alters the argument!
|
|
*/
|
|
void ipa_ntoh(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_classify - classify an IP address
|
|
* @x: IP address
|
|
*
|
|
* ipa_classify() returns an address class of @x, that is a bitwise or
|
|
* of address type (%IADDR_INVALID, %IADDR_HOST, %IADDR_BROADCAST, %IADDR_MULTICAST)
|
|
* with address scope (%SCOPE_HOST to %SCOPE_UNIVERSE) or -1 (%IADDR_INVALID)
|
|
* for an invalid address.
|
|
*/
|
|
int ipa_classify(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ip4_class_mask - guess netmask according to address class
|
|
* @x: IPv4 address
|
|
*
|
|
* This function (available in IPv4 version only) returns a
|
|
* network mask according to the address class of @x. Although
|
|
* classful addressing is nowadays obsolete, there still live
|
|
* routing protocols transferring no prefix lengths nor netmasks
|
|
* and this function could be useful to them.
|
|
*/
|
|
ip4_addr ip4_class_mask(ip4_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_from_u32 - convert IPv4 address to an integer
|
|
* @x: IP address
|
|
*
|
|
* This function takes an IPv4 address and returns its numeric
|
|
* representation.
|
|
*/
|
|
u32 ipa_from_u32(ip_addr x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_to_u32 - convert integer to IPv4 address
|
|
* @x: a 32-bit integer
|
|
*
|
|
* ipa_to_u32() takes a numeric representation of an IPv4 address
|
|
* and converts it to the corresponding &ip_addr.
|
|
*/
|
|
ip_addr ipa_to_u32(u32 x) { DUMMY }
|
|
|
|
/**
|
|
* ipa_compare - compare two IP addresses for order
|
|
* @x: IP address
|
|
* @y: IP address
|
|
*
|
|
* The ipa_compare() function takes two IP addresses and returns
|
|
* -1 if @x is less than @y in canonical ordering (lexicographical
|
|
* order of the bit strings), 1 if @x is greater than @y and 0
|
|
* if they are the same.
|
|
*/
|
|
int ipa_compare(ip_addr x, ip_addr y) { DUMMY }
|
|
|
|
/**
|
|
* ipa_build6 - build an IPv6 address from parts
|
|
* @a1: part #1
|
|
* @a2: part #2
|
|
* @a3: part #3
|
|
* @a4: part #4
|
|
*
|
|
* ipa_build() takes @a1 to @a4 and assembles them to a single IPv6
|
|
* address. It's used for example when a protocol wants to bind its
|
|
* socket to a hard-wired multicast address.
|
|
*/
|
|
ip_addr ipa_build6(u32 a1, u32 a2, u32 a3, u32 a4) { DUMMY }
|
|
|
|
/**
|
|
* ip_ntop - convert IP address to textual representation
|
|
* @a: IP address
|
|
* @buf: buffer of size at least %STD_ADDRESS_P_LENGTH
|
|
*
|
|
* This function takes an IP address and creates its textual
|
|
* representation for presenting to the user.
|
|
*/
|
|
char *ip_ntop(ip_addr a, char *buf) { DUMMY }
|
|
|
|
/**
|
|
* ip_ntox - convert IP address to hexadecimal representation
|
|
* @a: IP address
|
|
* @buf: buffer of size at least %STD_ADDRESS_P_LENGTH
|
|
*
|
|
* This function takes an IP address and creates its hexadecimal
|
|
* textual representation. Primary use: debugging dumps.
|
|
*/
|
|
char *ip_ntox(ip_addr a, char *buf) { DUMMY }
|
|
|
|
/**
|
|
* ip_pton - parse textual representation of IP address
|
|
* @a: textual representation
|
|
* @o: where to put the resulting address
|
|
*
|
|
* This function parses a textual IP address representation and
|
|
* stores the decoded address to a variable pointed to by @o.
|
|
* Returns 0 if a parse error has occurred, else 0.
|
|
*/
|
|
int ip_pton(char *a, ip_addr *o) { DUMMY }
|
|
|
|
#endif
|