#include "decode.h" #include #include "constants.h" namespace ft8 { static float max2(float a, float b); static float max4(float a, float b, float c, float d); static void heapify_down(Candidate *heap, int heap_size); static void heapify_up(Candidate *heap, int heap_size); static void decode_symbol(const uint8_t *power, const uint8_t *code_map, int bit_idx, float *log174); static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, const uint8_t *code_map, int bit_idx, float *log174); static int get_index(const MagArray *power, int block, int time_sub, int freq_sub, int bin) { return ((((block * power->time_osr) + time_sub) * power->freq_osr + freq_sub) * power->num_bins) + bin; } // Localize top N candidates in frequency and time according to their sync strength (looking at Costas symbols) // We treat and organize the candidate list as a min-heap (empty initially). int find_sync(const MagArray *power, const uint8_t *sync_map, int num_candidates, Candidate *heap, int min_score) { int heap_size = 0; int num_alt = power->time_osr * power->freq_osr; // Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits. // I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many // sync symbols we included in the score, so the score is averaged. for (int time_sub = 0; time_sub < power->time_osr; ++time_sub) { for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub) { for (int time_offset = -7; time_offset < power->num_blocks - ft8::NN + 7; ++time_offset) { for (int freq_offset = 0; freq_offset < power->num_bins - 8; ++freq_offset) { int score = 0; // Compute average score over sync symbols (m+k = 0-7, 36-43, 72-79) int num_symbols = 0; for (int m = 0; m <= 72; m += 36) { for (int k = 0; k < 7; ++k) { // Check for time boundaries if (time_offset + k + m < 0) continue; if (time_offset + k + m >= power->num_blocks) break; // int offset = ((time_offset + k + m) * num_alt + alt) * power->num_bins + freq_offset; int offset = get_index(power, time_offset + k + m, time_sub, freq_sub, freq_offset); const uint8_t *p8 = power->mag + offset; // Weighted difference between the expected and all other symbols // Does not work as well as the alternative score below // score += 8 * p8[sync_map[k]] - // p8[0] - p8[1] - p8[2] - p8[3] - // p8[4] - p8[5] - p8[6] - p8[7]; // Check only the neighbors of the expected symbol frequency- and time-wise int sm = sync_map[k]; // Index of the expected bin if (sm > 0) { // look at one frequency bin lower score += p8[sm] - p8[sm - 1]; } if (sm < 7) { // look at one frequency bin higher score += p8[sm] - p8[sm + 1]; } if (k > 0) { // look one symbol back in time score += p8[sm] - p8[sm - num_alt * power->num_bins]; } if (k < 6) { // look one symbol forward in time score += p8[sm] - p8[sm + num_alt * power->num_bins]; } ++num_symbols; } } score /= num_symbols; if (score < min_score) continue; // If the heap is full AND the current candidate is better than // the worst in the heap, we remove the worst and make space if (heap_size == num_candidates && score > heap[0].score) { heap[0] = heap[heap_size - 1]; --heap_size; heapify_down(heap, heap_size); } // If there's free space in the heap, we add the current candidate if (heap_size < num_candidates) { heap[heap_size].score = score; heap[heap_size].time_offset = time_offset; heap[heap_size].freq_offset = freq_offset; heap[heap_size].time_sub = time_sub; heap[heap_size].freq_sub = freq_sub; ++heap_size; heapify_up(heap, heap_size); } } } } } return heap_size; } // Compute log likelihood log(p(1) / p(0)) of 174 message bits // for later use in soft-decision LDPC decoding void extract_likelihood(const MagArray *power, const Candidate & cand, const uint8_t *code_map, float *log174) { int num_alt = power->time_osr * power->freq_osr; // int offset = (cand.time_offset * num_alt + cand.time_sub * power->freq_osr + cand.freq_sub) * power->num_bins + cand.freq_offset; int offset = get_index(power, cand.time_offset, cand.time_sub, cand.freq_sub, cand.freq_offset); // Go over FSK tones and skip Costas sync symbols const int n_syms = 1; const int n_bits = 3 * n_syms; const int n_tones = (1 << n_bits); for (int k = 0; k < ft8::ND; k += n_syms) { // Add either 7 or 14 extra symbols to account for sync int sym_idx = (k < ft8::ND / 2) ? (k + 7) : (k + 14); int bit_idx = 3 * k; // Pointer to 8 bins of the current symbol const uint8_t *ps = power->mag + (offset + sym_idx * num_alt * power->num_bins); decode_symbol(ps, code_map, bit_idx, log174); } // Compute the variance of log174 float sum = 0; float sum2 = 0; float inv_n = 1.0f / ft8::N; for (int i = 0; i < ft8::N; ++i) { sum += log174[i]; sum2 += log174[i] * log174[i]; } float variance = (sum2 - sum * sum * inv_n) * inv_n; // Normalize log174 such that sigma = 2.83 (Why? It's in WSJT-X, ft8b.f90) // Seems to be 2.83 = sqrt(8). Experimentally sqrt(16) works better. float norm_factor = sqrtf(16.0f / variance); for (int i = 0; i < ft8::N; ++i) { log174[i] *= norm_factor; } } static float max2(float a, float b) { return (a >= b) ? a : b; } static float max4(float a, float b, float c, float d) { return max2(max2(a, b), max2(c, d)); } static void heapify_down(Candidate *heap, int heap_size) { // heapify from the root down int current = 0; while (true) { int largest = current; int left = 2 * current + 1; int right = left + 1; if (left < heap_size && heap[left].score < heap[largest].score) { largest = left; } if (right < heap_size && heap[right].score < heap[largest].score) { largest = right; } if (largest == current) { break; } Candidate tmp = heap[largest]; heap[largest] = heap[current]; heap[current] = tmp; current = largest; } } static void heapify_up(Candidate *heap, int heap_size) { // heapify from the last node up int current = heap_size - 1; while (current > 0) { int parent = (current - 1) / 2; if (heap[current].score >= heap[parent].score) { break; } Candidate tmp = heap[parent]; heap[parent] = heap[current]; heap[current] = tmp; current = parent; } } // Compute unnormalized log likelihood log(p(1) / p(0)) of 3 message bits (1 FSK symbol) static void decode_symbol(const uint8_t *power, const uint8_t *code_map, int bit_idx, float *log174) { // Cleaned up code for the simple case of n_syms==1 float s2[8]; for (int j = 0; j < 8; ++j) { s2[j] = (float)power[code_map[j]]; } log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]); log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]); log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]); } // Compute unnormalized log likelihood log(p(1) / p(0)) of bits corresponding to several FSK symbols at once static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, const uint8_t *code_map, int bit_idx, float *log174) { // The following section implements what seems to be multiple-symbol decode at one go, // corresponding to WSJT-X's ft8b.f90. Experimentally found not to be any better than // 1-symbol decode. const int n_bits = 3 * n_syms; const int n_tones = (1 << n_bits); float s2[n_tones]; for (int j = 0; j < n_tones; ++j) { int j1 = j & 0x07; if (n_syms == 1) { s2[j] = (float)power[code_map[j1]]; continue; } int j2 = (j >> 3) & 0x07; if (n_syms == 2) { s2[j] = (float)power[code_map[j2]]; s2[j] += (float)power[code_map[j1] + 4 * num_bins]; continue; } int j3 = (j >> 6) & 0x07; s2[j] = (float)power[code_map[j3]]; s2[j] += (float)power[code_map[j2] + 4 * num_bins]; s2[j] += (float)power[code_map[j1] + 8 * num_bins]; } // No need to go back to linear scale any more. Works better in dB. // for (int j = 0; j < n_tones; ++j) { // s2[j] = powf(10.0f, 0.1f * s2[j]); // } // Extract bit significance (and convert them to float) // 8 FSK tones = 3 bits for (int i = 0; i < n_bits; ++i) { if (bit_idx + i >= ft8::N) { // Respect array size break; } uint16_t mask = (n_tones >> (i + 1)); float max_zero = -1000, max_one = -1000; for (int n = 0; n < n_tones; ++n) { if (n & mask) { max_one = max2(max_one, s2[n]); } else { max_zero = max2(max_zero, s2[n]); } } log174[bit_idx + i] = max_one - max_zero; } } } // namespace