#include #include #include #include #include "common/wave.h" #include "ft8/pack.h" #include "ft8/encode.h" #include "ft8/pack_v2.h" #include "ft8/encode_v2.h" #include "ft8/ldpc.h" #include "fft/kiss_fftr.h" void usage() { printf("Decode a 15-second WAV file.\n"); } float hann_i(int i, int N) { float x = sinf((float)M_PI * i / (N - 1)); return x*x; } struct Candidate { int16_t score; uint16_t time_offset; uint16_t freq_offset; uint8_t time_alt; uint8_t freq_alt; }; void find_candidates(int num_blocks, int num_bins, const uint8_t * power, int num_candidates, Candidate heap[num_candidates]) { // Costas 7x7 tone pattern const uint8_t ICOS7[] = { 2,5,6,0,4,1,3 }; int heap_size = 0; for (int alt = 0; alt < 4; ++alt) { for (int i = 0; i < num_blocks - NN; ++i) { for (int j = 0; j < num_bins - 8; ++j) { int score = 0; // Compute score over bins 0-7, 36-43, 72-79 for (int m = 0; m <= 72; m += 36) { for (int k = 0; k < 7; ++k) { int offset = ((i + k + m) * 4 + alt) * num_bins + j; // score += 8 * (int)power[i + k + m][alt][j + ICOS7[k]] - score += 8 * (int)power[offset + ICOS7[k]] - power[offset + 0] - power[offset + 1] - power[offset + 2] - power[offset + 3] - power[offset + 4] - power[offset + 5] - power[offset + 6] - power[offset + 7]; } } // update the candidate list if (heap_size == num_candidates && score > heap[0].score) { //printf("Removing score %d\n", heap[0].score); // extract the least promising candidate heap[0] = heap[heap_size - 1]; --heap_size; // heapify from the root down int current = 0; while (true) { int largest = current; int left = 2 * current + 1; int right = left + 1; if (left < heap_size && heap[left].score < heap[largest].score) { largest = left; } if (right < heap_size && heap[right].score < heap[largest].score) { largest = right; } if (largest == current) { break; } Candidate tmp = heap[largest]; heap[largest] = heap[current]; heap[current] = tmp; current = largest; } } if (heap_size < num_candidates) { // add the current candidate //printf("Adding score %d\n", score); heap[heap_size].score = score; heap[heap_size].time_offset = i; heap[heap_size].freq_offset = j; ++heap_size; // heapify from the last node up int current = heap_size - 1; while (current > 0) { int parent = (current - 1) / 2; if (heap[current].score >= heap[parent].score) { break; } Candidate tmp = heap[parent]; heap[parent] = heap[current]; heap[current] = tmp; current = parent; } } } } } } void extract_power(const float *signal, int num_samples, int num_bins, uint8_t * power) { const int block_size = 2 * num_bins; // Average over 2 bins per FSK tone const int nfft = 2 * block_size; // We take FFT of two blocks, advancing by one const int num_blocks = (num_samples - (block_size/2) - block_size) / block_size; float window[nfft]; for (int i = 0; i < nfft; ++i) { window[i] = hann_i(i, nfft); } size_t fft_work_size; kiss_fftr_alloc(nfft, 0, 0, &fft_work_size); printf("N_FFT = %d\n", nfft); printf("FFT work area = %lu\n", fft_work_size); void * fft_work = malloc(fft_work_size); kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size); int offset = 0; for (int i = 0; i < num_blocks; ++i) { // Loop over two possible time offsets (0 and block_size/2) for (int time_offset = 0; time_offset <= block_size/2; time_offset += block_size/2) { kiss_fft_scalar timedata[nfft]; kiss_fft_cpx freqdata[nfft/2 + 1]; float mag_db[nfft/2 + 1]; // Extract windowed signal block for (int j = 0; j < nfft; ++j) { timedata[j] = window[j] * signal[i * block_size + j + time_offset]; } kiss_fftr(fft_cfg, timedata, freqdata); // Compute log magnitude in decibels for (int j = 0; j < nfft/2 + 1; ++j) { float mag2 = (freqdata[j].i * freqdata[j].i + freqdata[j].r * freqdata[j].r); mag_db[j] = 10.0f * logf(1.0E-10f + mag2); } // Loop over two possible frequency bin offsets (for averaging) for (int freq_offset = 0; freq_offset <= 1; ++freq_offset) { for (int j = 0; j < num_bins; ++j) { float db1 = mag_db[j * 2 + freq_offset]; float db2 = mag_db[j * 2 + freq_offset + 1]; float db = (db1 + db2) / 2; // Scale decibels to unsigned 8-bit range int scaled = (int)(0.5f + 2 * (db + 100)); power[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled); ++offset; } } } } free(fft_work); } int main(int argc, char **argv) { // Expect one command-line argument if (argc < 2) { usage(); return -1; } const char *wav_path = argv[1]; int sample_rate = 12000; int num_samples = 15 * sample_rate; float signal[num_samples]; int rc = load_wav(signal, num_samples, sample_rate, wav_path); if (rc < 0) { return -1; } const int num_bins = (int)(sample_rate / 2 / 6.25); const int block_size = 2 * num_bins; const int num_blocks = (num_samples - (block_size/2) - block_size) / block_size; uint8_t power[num_blocks * 4 * num_bins]; // [num_blocks][4][num_bins] ~ 200 KB extract_power(signal, num_samples, num_bins, power); const int num_candidates = 200; Candidate heap[num_candidates]; find_candidates(num_blocks, num_bins, power, num_candidates, heap); return 0; }