#include #include #include #include #include "ft8/unpack_v2.h" #include "ft8/ldpc.h" #include "ft8/constants.h" #include "common/wave.h" #include "fft/kiss_fftr.h" void usage() { printf("Decode a 15-second WAV file.\n"); } float hann_i(int i, int N) { float x = sinf((float)M_PI * i / (N - 1)); return x*x; } struct Candidate { int16_t score; uint16_t time_offset; uint16_t freq_offset; uint8_t time_sub; uint8_t freq_sub; }; void heapify_down(Candidate * heap, int heap_size) { // heapify from the root down int current = 0; while (true) { int largest = current; int left = 2 * current + 1; int right = left + 1; if (left < heap_size && heap[left].score < heap[largest].score) { largest = left; } if (right < heap_size && heap[right].score < heap[largest].score) { largest = right; } if (largest == current) { break; } Candidate tmp = heap[largest]; heap[largest] = heap[current]; heap[current] = tmp; current = largest; } } void heapify_up(Candidate * heap, int heap_size) { // heapify from the last node up int current = heap_size - 1; while (current > 0) { int parent = (current - 1) / 2; if (heap[current].score >= heap[parent].score) { break; } Candidate tmp = heap[parent]; heap[parent] = heap[current]; heap[current] = tmp; current = parent; } } // Find top N candidates in frequency and time according to their sync strength (looking at Costas symbols) // We treat and organize the candidate list as a min-heap (empty initially). int find_sync(const uint8_t *power, int num_blocks, int num_bins, const uint8_t *sync_map, int num_candidates, Candidate *heap) { int heap_size = 0; for (int alt = 0; alt < 4; ++alt) { for (int time_offset = 0; time_offset < num_blocks - FT8_NN; ++time_offset) { for (int freq_offset = 0; freq_offset < num_bins - 8; ++freq_offset) { int score = 0; // Compute score over Costas symbols (0-7, 36-43, 72-79) for (int m = 0; m <= 72; m += 36) { for (int k = 0; k < 7; ++k) { int offset = ((time_offset + k + m) * 4 + alt) * num_bins + freq_offset; score += 8 * (int)power[offset + sync_map[k]] - power[offset + 0] - power[offset + 1] - power[offset + 2] - power[offset + 3] - power[offset + 4] - power[offset + 5] - power[offset + 6] - power[offset + 7]; } } // If the heap is full AND the current candidate is better than // the worst in the heap, we remove the worst and make space if (heap_size == num_candidates && score > heap[0].score) { heap[0] = heap[heap_size - 1]; --heap_size; heapify_down(heap, heap_size); } // If there's free space in the heap, we add the current candidate if (heap_size < num_candidates) { heap[heap_size].score = score; heap[heap_size].time_offset = time_offset; heap[heap_size].freq_offset = freq_offset; heap[heap_size].time_sub = alt / 2; heap[heap_size].freq_sub = alt % 2; ++heap_size; heapify_up(heap, heap_size); } } } } return heap_size; } // Compute FFT magnitudes (log power) for each timeslot in the signal void extract_power(const float * signal, int num_blocks, int num_bins, uint8_t * power) { const int block_size = 2 * num_bins; // Average over 2 bins per FSK tone const int nfft = 2 * block_size; // We take FFT of two blocks, advancing by one float window[nfft]; for (int i = 0; i < nfft; ++i) { window[i] = hann_i(i, nfft); } // for (int i = 0; i < nfft; ++i) { // window[i] = (i < block_size) ? 2 * hann_i(i, block_size) : 0.0f; // } size_t fft_work_size; kiss_fftr_alloc(nfft, 0, 0, &fft_work_size); printf("N_FFT = %d\n", nfft); printf("FFT work area = %lu\n", fft_work_size); void * fft_work = malloc(fft_work_size); kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size); int offset = 0; float fft_norm = 1.0f / nfft; float max_mag = -100.0f; for (int i = 0; i < num_blocks; ++i) { // Loop over two possible time offsets (0 and block_size/2) for (int time_sub = 0; time_sub <= block_size/2; time_sub += block_size/2) { kiss_fft_scalar timedata[nfft]; kiss_fft_cpx freqdata[nfft/2 + 1]; float mag_db[nfft/2 + 1]; // Extract windowed signal block for (int j = 0; j < nfft; ++j) { timedata[j] = window[j] * signal[(i * block_size) + (j + time_sub)]; } kiss_fftr(fft_cfg, timedata, freqdata); // Compute log magnitude in decibels for (int j = 0; j < nfft/2 + 1; ++j) { float mag2 = (freqdata[j].i * freqdata[j].i + freqdata[j].r * freqdata[j].r); mag_db[j] = 10.0f * log10f(1.0E-10f + mag2 * fft_norm); } // Loop over two possible frequency bin offsets (for averaging) for (int freq_sub = 0; freq_sub < 2; ++freq_sub) { for (int j = 0; j < num_bins; ++j) { float db1 = mag_db[j * 2 + freq_sub]; float db2 = mag_db[j * 2 + freq_sub + 1]; float db = (db1 + db2) / 2; // Scale decibels to unsigned 8-bit range and clamp the value int scaled = (int)(2 * (db + 100)); power[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled); ++offset; if (db > max_mag) max_mag = db; } } } } printf("Max magnitude: %.1f dB\n", max_mag); free(fft_work); } uint8_t max2(uint8_t a, uint8_t b) { return (a >= b) ? a : b; } uint8_t max4(uint8_t a, uint8_t b, uint8_t cand, uint8_t d) { return max2(max2(a, b), max2(cand, d)); } // Compute log likelihood log(p(1) / p(0)) of 174 message bits // for later use in soft-decision LDPC decoding void extract_likelihood(const uint8_t *power, int num_bins, const Candidate & cand, const uint8_t *code_map, float *log174) { int offset = (cand.time_offset * 4 + cand.time_sub * 2 + cand.freq_sub) * num_bins + cand.freq_offset; int k = 0; // Go over FSK tones and skip Costas sync symbols for (int i = 7; i < FT8_NN - 7; ++i) { if (i == 36) i += 7; // Pointer to 8 bins of the current symbol const uint8_t * ps = power + (offset + i * 4 * num_bins); uint8_t s2[8]; for (int i = 0; i < 8; ++i) { s2[i] = ps[code_map[i]]; } // Extract bit significance (and convert them to float) // 8 FSK tones = 3 bits log174[k + 0] = (int)max4(s2[4], s2[5], s2[6], s2[7]) - (int)max4(s2[0], s2[1], s2[2], s2[3]); log174[k + 1] = (int)max4(s2[2], s2[3], s2[6], s2[7]) - (int)max4(s2[0], s2[1], s2[4], s2[5]); log174[k + 2] = (int)max4(s2[1], s2[3], s2[5], s2[7]) - (int)max4(s2[0], s2[2], s2[4], s2[6]); // printf("%d %d %d %d %d %d %d %d : %.0f %.0f %.0f\n", // ps[0], ps[1], ps[2], ps[3], ps[4], ps[5], ps[6], ps[7], // log174[k + 0], log174[k + 1], log174[k + 2]); k += 3; } // Compute the variance of log174 float sum = 0; float sum2 = 0; float inv_n = 1.0f / (3 * FT8_ND); for (int i = 0; i < 3 * FT8_ND; ++i) { sum += log174[i]; sum2 += log174[i] * log174[i]; } float variance = (sum2 - sum * sum * inv_n) * inv_n; // Normalize log174 such that sigma = 2.83 (Why? It's in WSJT-X) float norm_factor = 2.83f / sqrtf(variance); for (int i = 0; i < 3 * FT8_ND; ++i) { log174[i] *= norm_factor; //printf("%.1f ", log174[i]); } //printf("\n"); } void test_tones(float *log174) { for (int i = 0; i < FT8_ND; ++i) { const uint8_t inv_map[8] = {0, 1, 3, 2, 6, 4, 5, 7}; uint8_t tone = ("0000000011721762454112705354533170166234757420515470163426"[i]) - '0'; uint8_t b3 = inv_map[tone]; log174[3 * i] = (b3 & 4) ? +1.0 : -1.0; log174[3 * i + 1] = (b3 & 2) ? +1.0 : -1.0; log174[3 * i + 2] = (b3 & 1) ? +1.0 : -1.0; } // 3140652 00000000117217624541127053545 3140652 33170166234757420515470163426 3140652 // 0000000011721762454112705354533170166234757420515470163426 // 0000000011721762454112705454544170166344757430515470073537 // 0000000011711761444111704343433170166233747320414370072427 // 0000000011711761454111705353533170166233757320515370072527 } void print_tones(const uint8_t *code_map, const float *log174) { for (int k = 0; k < 3 * FT8_ND; k += 3) { uint8_t max = 0; if (log174[k + 0] > 0) max |= 4; if (log174[k + 1] > 0) max |= 2; if (log174[k + 2] > 0) max |= 1; printf("%d", code_map[max]); } printf("\n"); } int main(int argc, char ** argv) { // Expect one command-line argument if (argc < 2) { usage(); return -1; } const char * wav_path = argv[1]; int sample_rate = 12000; int num_samples = 15 * sample_rate; float signal[num_samples]; int rc = load_wav(signal, num_samples, sample_rate, wav_path); if (rc < 0) { return -1; } const float fsk_dev = 6.25f; const int num_bins = (int)(sample_rate / (2 * fsk_dev)); const int block_size = 2 * num_bins; const int num_blocks = (num_samples - (block_size/2) - block_size) / block_size; uint8_t power[num_blocks * 4 * num_bins]; // [num_blocks][4][num_bins] ~ 200 KB printf("%d blocks, %d bins\n", num_blocks, num_bins); extract_power(signal, num_blocks, num_bins, power); int num_candidates = 100; Candidate heap[num_candidates]; find_sync(power, num_blocks, num_bins, kCostas_map, num_candidates, heap); for (int idx = 0; idx < num_candidates; ++idx) { Candidate &cand = heap[idx]; float log174[3 * FT8_ND]; extract_likelihood(power, num_bins, cand, kGray_map, log174); const int num_iters = 25; uint8_t plain[3 * FT8_ND]; int n_errors = 0; float freq_hz = (cand.freq_offset + cand.freq_sub / 2.0f) * fsk_dev; float time_sec = (cand.time_offset + cand.time_sub / 2.0f) / fsk_dev; printf("%03d: score = %d freq = %.1f time = %.2f\n", idx, cand.score, freq_hz, time_sec); bp_decode(log174, num_iters, plain, &n_errors); //ldpc_decode(log174, num_iters, plain, &n_errors); printf("ldpc_decode() = %d\n", n_errors); if (n_errors == 0) { //print_tones(kGray_map, log174); // Extract payload + CRC uint8_t a91[12]; uint8_t mask = 0x80; uint8_t position = 0; for (int i = 0; i < 12; ++i) { a91[i] = 0; } for (int i = 0; i < FT8_K; ++i) { if (plain[i]) { a91[position] |= mask; } mask >>= 1; if (!mask) { mask = 0x80; ++position; } } // TODO: check CRC // for (int i = 0; i < 12; ++i) { // printf("%02x ", a91[i]); // } // printf("\n"); char message[20]; unpack77(a91, message); // Fake WSJT-X-like output for now printf("000000 0 %4.1f %4d ~ %s\n", time_sec, (int)(freq_hz + 0.5f), message); } } return 0; }