// // LDPC decoder for FT8. // // given a 174-bit codeword as an array of log-likelihood of zero, // return a 174-bit corrected codeword, or zero-length array. // last 87 bits are the (systematic) plain-text. // this is an implementation of the sum-product algorithm // from Sarah Johnson's Iterative Error Correction book. // codeword[i] = log ( P(x=0) / P(x=1) ) // #include #include #include #include "constants.h" int ldpc_check(uint8_t codeword[]); float fast_tanh(float x); float fast_atanh(float x); // codeword is 174 log-likelihoods. // plain is a return value, 174 ints, to be 0 or 1. // max_iters is how hard to try. // ok == 87 means success. void ldpc_decode(float codeword[], int max_iters, uint8_t plain[], int *ok) { float m[FT8_M][FT8_N]; // ~60 kB float e[FT8_M][FT8_N]; // ~60 kB int min_errors = FT8_M; for (int j = 0; j < FT8_M; j++) { for (int i = 0; i < FT8_N; i++) { m[j][i] = codeword[i]; e[j][i] = 0.0f; } } for (int iter = 0; iter < max_iters; iter++) { for (int j = 0; j < FT8_M; j++) { for (int ii1 = 0; ii1 < kNrw[j]; ii1++) { int i1 = kNm[j][ii1] - 1; float a = 1.0f; for (int ii2 = 0; ii2 < kNrw[j]; ii2++) { int i2 = kNm[j][ii2] - 1; if (i2 != i1) { a *= fast_tanh(-m[j][i2] / 2.0f); } } e[j][i1] = logf((1 - a) / (1 + a)); } } uint8_t cw[FT8_N]; for (int i = 0; i < FT8_N; i++) { float l = codeword[i]; for (int j = 0; j < 3; j++) l += e[kMn[i][j] - 1][i]; cw[i] = (l > 0) ? 1 : 0; } int errors = ldpc_check(cw); if (errors < min_errors) { // Update the current best result for (int i = 0; i < FT8_N; i++) { plain[i] = cw[i]; } min_errors = errors; if (errors == 0) { break; // Found a perfect answer } } for (int i = 0; i < FT8_N; i++) { for (int ji1 = 0; ji1 < 3; ji1++) { int j1 = kMn[i][ji1] - 1; float l = codeword[i]; for (int ji2 = 0; ji2 < 3; ji2++) { if (ji1 != ji2) { int j2 = kMn[i][ji2] - 1; l += e[j2][i]; } } m[j1][i] = l; } } } *ok = min_errors; } // // does a 174-bit codeword pass the FT8's LDPC parity checks? // returns the number of parity errors. // 0 means total success. // int ldpc_check(uint8_t codeword[]) { int errors = 0; // kNm[87][7] for (int j = 0; j < FT8_M; ++j) { uint8_t x = 0; for (int ii1 = 0; ii1 < kNrw[j]; ++ii1) { x ^= codeword[kNm[j][ii1] - 1]; } if (x != 0) { ++errors; } } return errors; } void bp_decode(float codeword[], int max_iters, uint8_t plain[], int *ok) { float tov[FT8_N][3]; float toc[FT8_M][7]; int min_errors = FT8_M; int nclast = 0; int ncnt = 0; // initialize messages to checks for (int i = 0; i < FT8_M; ++i) { for (int j = 0; j < kNrw[i]; ++j) { toc[i][j] = codeword[kNm[i][j] - 1]; } } for (int i = 0; i < FT8_N; ++i) { for (int j = 0; j < 3; ++j) { tov[i][j] = 0; } } for (int iter = 0; iter < max_iters; ++iter) { float zn[FT8_N]; uint8_t cw[FT8_N]; // Update bit log likelihood ratios (tov=0 in iter 0) for (int i = 0; i < FT8_N; ++i) { zn[i] = codeword[i] + tov[i][0] + tov[i][1] + tov[i][2]; cw[i] = (zn[i] > 0) ? 1 : 0; } // Check to see if we have a codeword (check before we do any iter) int errors = ldpc_check(cw); if (errors < min_errors) { // we have a better guess - update the result for (int i = 0; i < FT8_N; i++) { plain[i] = cw[i]; } min_errors = errors; if (errors == FT8_M) { break; // Found a perfect answer } } // Send messages from bits to check nodes for (int i = 0; i < FT8_M; ++i) { for (int j = 0; j < kNrw[i]; ++j) { int ibj = kNm[i][j] - 1; toc[i][j] = zn[ibj]; for (int kk = 0; kk < 3; ++kk) { // subtract off what the bit had received from the check if (kMn[ibj][kk] - 1 == i) { toc[i][j] -= tov[ibj][kk]; } } } } // send messages from check nodes to variable nodes for (int i = 0; i < FT8_M; ++i) { for (int j = 0; j < kNrw[i]; ++j) { toc[i][j] = fast_tanh(-toc[i][j] / 2); } } for (int i = 0; i < FT8_N; ++i) { for (int j = 0; j < 3; ++j) { int ichk = kMn[i][j] - 1; // kMn(:,j) are the checks that include bit j float Tmn = 1.0f; for (int k = 0; k < kNrw[ichk]; ++k) { if (kNm[ichk][k] - 1 != i) { Tmn *= toc[ichk][k]; } } tov[i][j] = 2 * fast_atanh(-Tmn); } } } *ok = min_errors; } // https://varietyofsound.wordpress.com/2011/02/14/efficient-tanh-computation-using-lamberts-continued-fraction/ // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/10/0001/ // https://mathr.co.uk/blog/2017-09-06_approximating_hyperbolic_tangent.html // thank you Douglas Bagnall // https://math.stackexchange.com/a/446411 float fast_tanh(float x) { if (x < -4.97f) { return -1.0f; } if (x > 4.97f) { return 1.0f; } float x2 = x * x; //float a = x * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2))); //float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f)); //float a = x * (10395.0f + x2 * (1260.0f + x2 * 21.0f)); //float b = 10395.0f + x2 * (4725.0f + x2 * (210.0f + x2)); float a = x * (945.0f + x2 * (105.0f + x2)); float b = 945.0f + x2 * (420.0f + x2 * 15.0f); return a / b; } float fast_atanh(float x) { float x2 = x * x; //float a = x * (-15015.0f + x2 * (19250.0f + x2 * (-5943.0f + x2 * 256.0f))); //float b = (-15015.0f + x2 * (24255.0f + x2 * (-11025.0f + x2 * 1225.0f))); //float a = x * (-1155.0f + x2 * (1190.0f + x2 * -231.0f)); //float b = (-1155.0f + x2 * (1575.0f + x2 * (-525.0f + x2 * 25.0f))); float a = x * (945.0f + x2 * (-735.0f + x2 * 64.0f)); float b = (945.0f + x2 * (-1050.0f + x2 * 225.0f)); return a / b; } float pltanh(float x) { float isign = +1; if (x < 0) { isign = -1; x = -x; } if (x < 0.8f) { return isign * 0.83 * x; } if (x < 1.6f) { return isign * (0.322f * x + 0.4064f); } if (x < 3.0f) { return isign * (0.0524f * x + 0.8378f); } if (x < 7.0f) { return isign * (0.0012f * x + 0.9914f); } return isign*0.9998f; } float platanh(float x) { float isign = +1; if (x < 0) { isign = -1; x = -x; } if (x < 0.664f) { return isign * x / 0.83f; } if (x < 0.9217f) { return isign * (x - 0.4064f) / 0.322f; } if (x < 0.9951f) { return isign * (x - 0.8378f) / 0.0524f; } if (x < 0.9998f) { return isign * (x - 0.9914f) / 0.0012f; } return isign * 7.0f; }