no more warnings
No more warnings over me
And while it is being compiled all the log is black and white
Release BIRD now and then let it flee
(use the melody of well-known Oh Freedom!)
The TTL check must be done after instance ID dispatch to avoid warnings
when a physical iface is shared by multiple instances and some use TTL
security and some not.
New data types net_addr and variants (in lib/net.h) describing
network addresses (prefix/pxlen). Modifications of FIB structures
to handle these data types and changing everything to use these
data types instead of prefix/pxlen pairs where possible.
The commit is WiP, some protocols are not yet updated (BGP, Kernel),
and the code contains some temporary scaffolding.
Comments are welcome.
The new RIP implementation fixes plenty of old bugs and also adds support
for many new features: ECMP support, link state support, BFD support,
configurable split horizon and more. Most options are now per-interface.
I/O:
- BSD: specify src addr on IP sockets by IP_HDRINCL
- BSD: specify src addr on UDP sockets by IP_SENDSRCADDR
- Linux: specify src addr on IP/UDP sockets by IP_PKTINFO
- IPv6: specify src addr on IP/UDP sockets by IPV6_PKTINFO
- Alternative SKF_BIND flag for binding to IP address
- Allows IP/UDP sockets without tx_hook, on these
sockets a packet is discarded when TX queue is full
- Use consistently SOL_ for socket layer values.
OSPF:
- Packet src addr is always explicitly set
- Support for secondary addresses in BSD
- Dynamic RX/TX buffers
- Fixes some minor buffer overruns
- Interface option 'tx length'
- Names for vlink pseudoifaces (vlinkX)
- Vlinks use separate socket for TX
- Vlinks do not use fixed associated iface
- Fixes TTL for direct unicast packets
- Fixes DONTROUTE for OSPF sockets
- Use ifa->ifname instead of ifa->iface->name
Interfaces for OSPF and RIP could be configured to use (and request)
TTL 255 for traffic to direct neighbors.
Thanks to Simon Dickhoven for the original patch for RIPng.
A very tricky bug. OSPF on NBMA interfaces probably never really worked.
When a packet was sent to multiple destinations, the checksum was
calculated multiple times from a packet with already filled checksum
field (from previous calculation). Therefore, many packets were sent
with an invalid checksum.